分析 根據(jù)函數(shù)奇偶性的定義進(jìn)行判斷即可.
解答 解:(1)∵f(-x)=x2+x3.
∴f(-x)≠-f(x),且f(-x)≠f(x),即函數(shù)f(x)是非奇非偶函數(shù).
(2)由$\left\{\begin{array}{l}{x^2-1≥0}\\{1-x^2≥0}\end{array}\right.$得$\left\{\begin{array}{l}{x^2≥1}\\{x^2≤1}\end{array}\right.$,即x2=1,解得x=1或x=-1,
定義域?yàn)閧1,-1},
此時(shí)f(x)=0,則f(x)為既是奇函數(shù)又是偶函數(shù).
(3)由4-x2≥0得-2≤x≤2,
此時(shí)1≤x+3≤5,
即f(x)=$\frac{\sqrt{4-{x}^{2}}}{x+3-3}$=$\frac{\sqrt{4-{x}^{2}}}{x}$,則函數(shù)的定義域?yàn)閧x|-2≤x≤2且x≠0},
則f(-x)=-$\frac{\sqrt{4-{x}^{2}}}{x}$=-f(x),即函數(shù)f(x)是奇函數(shù).
點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的判斷,根據(jù)奇偶性的定義是解決本題的關(guān)鍵.注意要先判斷定義域是否關(guān)于原點(diǎn)對(duì)稱.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | [1,2] | B. | (-1,2) | C. | [-1,2] | D. | (-2,1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | |a+b|>|a-b| | B. | |a|+|b|>|a-b| | C. | |a-c|≤|a-b|+|b-c| | D. | |a-b|<|a|-|b| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com