欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

11.如圖過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點F任作一條與兩坐標(biāo)軸都不垂直的弦AB,若點M在x軸上,且使得MF為△AMB的一條內(nèi)角平分線,則稱點M為該橢圓的“左特征點”,則橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的“左特征點”M的坐標(biāo)為( 。
A.(-2,0)B.(-3,0)C.(-4,0)D.(-5,0)

分析 設(shè)M(m,0)為橢圓的左特征點,根據(jù)橢圓左焦點,設(shè)直線AB方程代入橢圓方程,由∠AMB被x軸平分,kAM+kBM=0,利用韋達(dá)定理,即可求得結(jié)論.

解答 解:設(shè)M(m,0)為橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左特征點,橢圓的左焦點F(-1,0),
可設(shè)直線AB的方程為x=ky-1(k≠0)
代入$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1得:3(ky-1)2+4y2=12,即(3k2+4)y2-6ky-9=0,
設(shè)A(x1,y1),B(x2,y2)得y1+y2=$\frac{6k}{3{k}^{2}+4}$,y1y2=-$\frac{9}{3{k}^{2}+4}$
∵∠AMB被x軸平分,kAM+kBM=0,即$\frac{{y}_{1}}{{x}_{1}-m}+\frac{{y}_{2}}{{x}_{2}-m}=0$,
即y1(ky2-1)+y2(ky1-1)-(y1+y2)m=0
∴2ky1y2-(y1+y2)(m+1)=0
于是,2k×(-$\frac{9}{3{k}^{2}+4}$)-$\frac{6k}{3{k}^{2}+4}$×(m+1)=0
∵k≠0,∴-18-6(m+1)=0,即m=-4,∴M(-4,0).
故選:C.

點評 本題以新定義為載體主要考查了橢圓性質(zhì)的應(yīng)用,直線與橢圓相交關(guān)系的處理,要注意解題中直線AB得方程設(shè)為x=ky-2(k≠0)的好處在于避免討論直線的斜率是否存在.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.在平面直角坐標(biāo)系xOy中,點A的坐標(biāo)為(0,3),設(shè)圓C的半徑為,且圓心C在直線l:y=2x-4上.
(Ⅰ)若圓心C又在直線y=x-1上,過點A作圓C的切線,求此切線的方程;
(Ⅱ)若圓C上存在點M,使得|MA|=2|MO|,求圓心C的橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知橢圓$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的長軸長是短軸長的$\sqrt{3}$倍,且經(jīng)過點($\sqrt{3}$,1),O為坐標(biāo)原點.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)點M(0,2),直線l經(jīng)過M與橢圓相交于A、B兩點,若S△ABO=$\sqrt{3}$,直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知直線l:x-y+m=0與橢圓C:$\frac{{x}^{2}}{2}$+y2=1交于不同的兩點A,B,且線段AB的中點不在圓x2+y2=$\frac{5}{9}$內(nèi),則m的取值范圍為( 。
A.m≥1或m≤-1B.-$\sqrt{3}$≤m≤-1或1≤≤m≤$\sqrt{3}$C.-1≤m≤1D.-$\sqrt{3}$<m≤-1或1≤m<$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左焦點為F,右頂點為A,點B在橢圓上,且BF⊥x軸,直線AB交y軸于點P,若$\overrightarrow{AP}$=$\sqrt{2}$$\overrightarrow{PB}$,則橢圓的離心率是( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,過橢圓右焦點F作兩條弦AB與CD,當(dāng)弦AB與x軸垂直時,|AB|=$\sqrt{2}$.
(Ⅰ)求橢圓的方程;
(Ⅱ)若A點在第一象限,$\overrightarrow{AB}$•$\overrightarrow{CD}$=0,直線AB,CD的斜率分別為k1,k2
(i)當(dāng)k1+k2=0時,求△OAB的面積;
(ii)試判斷四邊形ACBD的面積是否有最小值?若有最小值,請求出最小值;若沒有,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓W:$\frac{x^2}{4}$+y2=1,直線l過點(0,-2)與橢圓W交于兩點A,B,O為坐標(biāo)原點.
(Ⅰ)設(shè)C為AB的中點,當(dāng)直線l的斜率為$\frac{3}{2}$時,求線段OC的長;
(Ⅱ)當(dāng)△OAB面積等于1時,求直線l的斜率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.如圖所示,程序框圖(算法流程圖)的輸出值x為12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.一幾何體的三視圖如圖所示,則它的體積為( 。
A.2B.3C.6D.9

查看答案和解析>>

同步練習(xí)冊答案