正三棱錐P—ABC中,CM=2PM,CN=2NB,對(duì)于以下結(jié)論:
![]()
①二面角B—PA—C大小的取值范圍是(
,π);
②若MN⊥AM,則PC與平面PAB所成角的大小為
;
③過點(diǎn)M與異面直線PA和BC都成
的直線有3條;
④若二面角B—PA—C大小為
,則過點(diǎn)N與平面PAC和平面PAB都成
的直線有3條.
正確的序號(hào)是 .
①②④
【解析】
試題分析:根據(jù)題意,由于正三棱錐P—ABC中,CM=2PM,CN=2NB,那么對(duì)于①二面角B—PA—C大小的取值范圍是(
,π);成立。
②若MN⊥AM,則PC與平面PAB所成角的大小為
;成立
③過點(diǎn)M與異面直線PA和BC都成
的直線有3條;不成立
④若二面角B—PA—C大小為
,則過點(diǎn)N與平面PAC和平面PAB都成
的直線有3條,成立,故填寫①②④
考點(diǎn):空間中角的求解
點(diǎn)評(píng):利用線面角和二面角的平面角的定義,以及異面直線的所成的角的概念,進(jìn)行求解確定,屬于基礎(chǔ)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
| ||
| 6 |
| ||
| 6 |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com