分析 通過an=2an-1+3an-2(n≥3)變形為an+λan-1=m(an-1+λan-2)形式計(jì)算可求.
解答 解:∵an=2an-1+3an-2(n≥3),
∴an+an-1=3(an-1+an-2),
又∵a2+a1=2+5=7,
∴數(shù)列{an+1+an}是以7為首項(xiàng)、3為公比的等比數(shù)列,
∴an+1+an=7•3n-1;
∵an=2an-1+3an-2(n≥3),
∴an-3an-1=-(an-1-3an-2),
又∵a2-3a1=2-3•5=-13,
∴數(shù)列{an+1-3an}是以-13為首項(xiàng)、-1為公比的等比數(shù)列,
∴an+1-3an=-13•(-1)n-1;
∴an=$\frac{({a}_{n+1}+{a}_{n})-({a}_{n+1}-3{a}_{n})}{4}$=$\frac{7•{3}^{n-1}+13•(-1)^{n-1}}{4}$,
故答案為:$\frac{7•{3}^{n-1}+13•(-1)^{n-1}}{4}$.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng),對(duì)表達(dá)式的靈活變形是解決本題的關(guān)鍵,注意解題方法的積累,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com