【題目】計算
(1)lg 8+lg 125﹣(
)﹣2+16
+(
﹣1)0
(2)已知tanα=3,求
的值.
【答案】
(1)解:lg 8+lg 125﹣(
)﹣2+16
+(
﹣1)0 =lg1000﹣49+23+1=3﹣49+8+1=﹣37.
(2)解:∵tanα=3,∴
=
=
=
.
【解析】(1)利用對數(shù)的運算法則、分數(shù)指數(shù)冪的運算法則,化簡所給的式子,可得結(jié)果.(2)利用同角三角函數(shù)的基本關(guān)系,吧要求的式子化為
,可得結(jié)果.
【考點精析】本題主要考查了對數(shù)的運算性質(zhì)和同角三角函數(shù)基本關(guān)系的運用的相關(guān)知識點,需要掌握①加法:
②減法:
③數(shù)乘:
④
⑤
;同角三角函數(shù)的基本關(guān)系:![]()
;![]()
;(3) 倒數(shù)關(guān)系:
才能正確解答此題.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)f(x)=6cos2
+
sinωx﹣3(ω>0)在一個周期內(nèi)的圖象如圖所示,A為圖象的最高點,B、C為圖象與x軸的交點,且△ABC為正三角形. ![]()
(1)求ω的值及函數(shù)f(x)的值域;
(2)若f(x0)=
,且x0∈(﹣
,
),求f(x0+1)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】數(shù)列
是正整數(shù)
的任一排列,且同時滿足以下兩個條件:
①
;②當
時,
(
).
記這樣的數(shù)列個數(shù)為
.
(I)寫出
的值;
(II)證明
不能被4整除.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)=ax﹣lnx(x∈(0,e]),其中e是自然常數(shù),a∈R.
(Ⅰ)當a=1時,求f(x)的單調(diào)區(qū)間和極值;
(Ⅱ)是否存在實數(shù)a,使f(x)的最小值是3,若存在,求出a的值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中實數(shù)
為常數(shù),
為自然對數(shù)的底數(shù).
(1)當
時,求函數(shù)
的單調(diào)區(qū)間;
(2)當
時,解關(guān)于
的不等式
;
(3)當
時,如果函數(shù)
不存在極值點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x)是定義在[﹣1,1]上的奇函數(shù),且f(1)=1,若a,b∈[﹣1,1],a+b≠0時,有
成立.
(1)判斷f(x)在[﹣1,1]上的單調(diào)性,并證明它;
(2)解不等式f(x2)<f(2x);
(3)若f(x)≤m2﹣2am+1對所有的a∈[﹣1,1]恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知{an}為等差數(shù)列,其公差為﹣2,且a7是a3與a9的等比中項,Sn為{an}的前n項和,n∈N* , 則S10的值為( )
A.﹣110
B.﹣90
C.90
D.110
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左,右焦點分別為
.過原點
的直線
與橢圓交于
兩點,點
是橢圓
上的點,若
,
,且
的周長為
.
(1)求橢圓
的方程;
(2) 設(shè)橢圓在點
處的切線記為直線
,點
在
上的射影分別為
,過
作
的垂線交
軸于點
,試問
是否為定值?若是,求出該定值;若不是,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com