欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.在極坐標(biāo)系中,過點$({\sqrt{2},\frac{π}{4}})$且與圓ρ=2cosθ相切的直線的方程為1=ρsinθ.

分析 分別把極坐標(biāo)方程化為直角坐標(biāo)方程,利用直線與圓相切的性質(zhì)可得切線的斜率,即可得出.

解答 解:點P$({\sqrt{2},\frac{π}{4}})$化為P(1,1),
圓ρ=2cosθ化為ρ2=2ρcosθ,∴x2+y2=2x,化為(x-1)2+y2=1.
設(shè)與圓相切的直線的方程為y-1=k(x-1),即kx-y+1-k=0,
則$\frac{|k+1-k|}{\sqrt{1+{k}^{2}}}$=1,解得k=0.
∴切線方程為y=1.
化為極坐標(biāo)方程為:1=ρsinθ.
故答案為:1=ρsinθ.

點評 本題考查了把極坐標(biāo)方程化為直角方程、直線與圓相切的性質(zhì)、點到直線的距離公式,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知函數(shù)f(x)=sin2ωx-2sin2ωx+1(ω>0)的最小正周期為4π,則函數(shù)f(x)的單調(diào)遞減區(qū)間( 。
A.[$\frac{π}{2}$+2kπ,$\frac{5π}{2}$+2kπ]k∈Z*B.[-$\frac{3π}{4}$+2kπ,$\frac{π}{4}$+2kπ]k∈Z*
C.[$\frac{π}{2}$+4kπ,$\frac{5π}{2}$+4kπ]k∈Z*D.[-$\frac{3π}{4}$+4kπ,$\frac{π}{4}$+4kπ]k∈Z*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)fn(x)=$\frac{{n{x^2}-ax}}{{{x^2}+1}}({n∈{N^*}})$的圖象在點(0,fn(0))處的切線方程為y=-x
(Ⅰ)求a的值及f1(x)的單調(diào)區(qū)間
(Ⅱ)是否存在實數(shù)k,使得射線y=kx(x≥-3)與曲線y=f1(x)有三個公共點?若存在,求出k的取值范圍;若不存在,說明理由
(Ⅲ)設(shè)x1,x2,…xn,為正實數(shù),且x1,x2,…xn=1,證明:fn(x1)+fn(x2)+…+fn(xn)≥0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.若雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的離心率為$\sqrt{5}$,則其漸近線方程為( 。
A.y=±2xB.y=$±\sqrt{2}x$C.y=$±\frac{1}{2}x$D.y=$±\frac{{\sqrt{2}}}{2}x$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知M是x2=8y的對稱軸與準(zhǔn)線的交點,點N是其焦點,點P在該拋物線上,且滿足|PM|=m|PN|,當(dāng)m取得最大值時,點P恰在以M、N為焦點的雙曲線上,則該雙曲線的實軸長為4($\sqrt{2}$-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.若△ABC中,b=3,∠B=$\frac{π}{3}$,則該三角形面積的最大值為$\frac{9\sqrt{3}}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知數(shù)列{an}的前n項和為Sn,a1=0,a1+a2+a3+…+an+n=an+1,n∈N*
(Ⅰ)求證:數(shù)列{an+1}是等比數(shù)列;
(Ⅱ)設(shè)數(shù)列{bn}的前n項和為Tn,b1=1,點(Tn+1,Tn)在直線$\frac{x}{n+1}-\frac{y}{n}=\frac{1}{2}$上,若不等式$\frac{b_1}{{{a_1}+1}}+\frac{b_2}{{{a_2}+1}}+…+\frac{b_n}{{{a_n}+1}}≥m-\frac{9}{{2+2{a_n}}}$對于n∈N*恒成立,求實數(shù)m的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若復(fù)數(shù)z滿足(1-i)z=(1+i)2,其中i為虛數(shù)單位,則在復(fù)平面上復(fù)數(shù)z對應(yīng)的點位于( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.△ABC中,角A、B、C所對額定邊分別為a,b,c,且b<c;
(Ⅰ)若a=c•cosB,求角C;
(Ⅱ)若cosA=sin(B-C),求角C.

查看答案和解析>>

同步練習(xí)冊答案