解:(1)證明:連接AC,AC交BD于O,連接EO.
∵底面ABCD是正方形,
∴點O是AC的中點在△PAC中,EO是中位線,
∴PA∥EO
而EO
平面EDB且PA
平面EDB,
所以,PA∥平面EDB
(2)證明: ∵PD⊥底面ABCD且DC
底面ABCD,
∴PD⊥DC
∵PD=DC,可知△PDC是等腰直角三角形,而DE是斜邊PC的中線,
∴DE⊥PC.①
同樣由PD⊥底面ABCD,得PD⊥BC.
∵底面ABCD是正方形,有DC⊥BC,
∴BC⊥平面PDC.而DE
平面PDC,
∴BC⊥DE.②
由①和②推得DE⊥平面PBC.而PB
平面PBC,
∴DE⊥PB
又EF⊥PB且DE∩EF=E,
所以PB⊥平面EFD.
(3)解:由(2)知,PB⊥DF,
故∠EFD是二面角C﹣PB﹣D的平面角.
由(2)知,DE⊥EF,PD⊥DB.
設正方形ABCD的邊長為a, 則![]()
,![]()
.
在Rt△PDB中,
.
在Rt△EFD中,
,
∴
.
所以,二面角C﹣PB﹣D的大小為
.
科目:高中數(shù)學 來源: 題型:
| 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com