分析 (1)通過橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,上頂點(diǎn)為B,已知|AB|=$\sqrt{3}$|OF|,且△A0B的面積為$\sqrt{2}$,建立關(guān)于a,b,c的方程,解出a,b,即求出橢圓的標(biāo)準(zhǔn)方程.
(2)對于存在性問題,要先假設(shè)存在,先設(shè)切線y=k(x-m)+2,與橢圓聯(lián)立,利用△=0,得出關(guān)于斜率k的方程,利用兩根之積公式k1k2=-1,求出Q點(diǎn)坐標(biāo).
解答 解:(1)∵橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的右焦點(diǎn)為F,右頂點(diǎn)為A,上頂點(diǎn)為B,已知|AB|=$\sqrt{3}$|OF|,且△A0B的面積為$\sqrt{2}$,
∴$\sqrt{{a}^{2}+^{2}}$=$\sqrt{3}$c,$\frac{1}{2}ab$=$\sqrt{2}$,
∴a=2,b=$\sqrt{2}$,
∴橢圓方程為$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{2}$=1.
(2)假設(shè)直線y=2上存在點(diǎn)Q滿足題意,
設(shè)Q(m,2),當(dāng)m=±2時(shí),從Q點(diǎn)所引的兩條切線不垂直.
當(dāng)m≠±2時(shí),設(shè)過點(diǎn)Q向橢圓所引的切線的斜率為k,則l的方程為y=k(x-m)+2,
代入橢圓方程,消去y,整理得:(1+2k2)x2-4k(mk-2)x+2(mk-2)2-4=0,
∵△=16k2(mk-2)2-4(1+2k2)[2(mk-2)2-4]=0,
∴(m2-4)k2-4mk+2=0,*
設(shè)兩條切線的斜率分別為k1,k2,
則k1,k2是方程(m2-4)k2-4mk+2=0的兩個(gè)根,
∴k1k2=$\frac{2}{{m}^{2}-4}$=-1,
解得m=±$\sqrt{2}$,點(diǎn)Q坐標(biāo)為($\sqrt{2}$,2),或(-$\sqrt{2}$,2).
∴直線y=2上兩點(diǎn)($\sqrt{2}$,2),(-$\sqrt{2}$,2)滿足題意.
點(diǎn)評(píng) 本題考查橢圓方程的求法,考查直線與橢圓的位置關(guān)系的判斷,考查滿足條件的點(diǎn)是否存在的判斷與求法,分類討論要全面.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 2${A}_{4}^{4}$ | B. | ${A}_{4}^{4}$•${A}_{3}^{3}$ | C. | ${A}_{4}^{4}$•${A}_{4}^{4}$ | D. | ${A}_{8}^{8}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | i | B. | -i | C. | 1-i | D. | -1+i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com