欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.已知函數(shù)f(x)=$\frac{lnx}{x}$.
(Ⅰ)求函數(shù)y=f(x)在點(diǎn)(1,0)處的切線方程;
(Ⅱ)設(shè)實(shí)數(shù)k使得f(x)<kx恒成立,求k的取值范圍;
(Ⅲ)設(shè)g(x)=f(x)-kx(k∈R),求函數(shù)g(x)在區(qū)間$[\frac{1}{e},{e^2}]$上的零點(diǎn)個(gè)數(shù).

分析 (Ⅰ)求出函數(shù)的導(dǎo)數(shù),計(jì)算f′(1)的值,代入切線方程即可;
(Ⅱ)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,確定函數(shù)的單調(diào)性即可;
(Ⅲ)令g(x)=0得:$k=\frac{f(x)}{x}=\frac{lnx}{x^2}$,通過討論k的范圍結(jié)合函數(shù)的單調(diào)性確定函數(shù)的零點(diǎn)問題.

解答 解:(Ⅰ)$f(x)=\frac{lnx}{x}$$f'(x)=\frac{1-lnx}{x^2}$…2 分,f′(1)=1…(3分)
曲線y=f(x)在點(diǎn)(1,0)處的切線方程為 y=x-1…(4分)
(Ⅱ)設(shè)$h(x)=\frac{f(x)}{x}=\frac{lnx}{x^2}(x>0)$,則$h'(x)=\frac{1-2lnx}{x^3}(x>0)$
令$h'(x)=\frac{1-2lnx}{x^3}=0$,解得:$x=\sqrt{e}$…(2分)
當(dāng)x在(0,+∞)上變化時(shí),h'(x),h(x)的變化情況如下表:

x$(0,\sqrt{e})$$\sqrt{e}$$(\sqrt{e},+∞)$
h'(x)+0-
h(x)$\frac{1}{2e}$
由上表可知,當(dāng)$x=\sqrt{e}$時(shí),h(x)取得最大值$\frac{1}{2e}$…(4分)
由已知對任意的x>0,$k>\frac{f(x)}{x}=h(x)$恒成立
所以,k得取值范圍是$(\frac{1}{2e},+∞)$.                     …(5分)
(Ⅲ)令g(x)=0得:$k=\frac{f(x)}{x}=\frac{lnx}{x^2}$…(1分)
由(Ⅱ)知,$h(x)=\frac{lnx}{x^2}$在$[\frac{1}{e},\sqrt{e}]$上是增函數(shù),在$[\sqrt{e},{e^2}]$上是減函數(shù).
且$h(\frac{1}{e})=-{e^2}$,$h(\sqrt{e})=\frac{1}{2e}$,$h({e^2})=\frac{2}{e^4}$
所以當(dāng)k<-e2或$k>\frac{1}{2e}$時(shí),函數(shù)g(x)在$[\frac{1}{e},{e^2}]$上無零點(diǎn);
當(dāng)$-{e^2}≤k<\frac{2}{e^4}$或$k=\frac{1}{2e}$時(shí),函數(shù)g(x)在$[\frac{1}{e},{e^2}]$上有1個(gè)零點(diǎn);
當(dāng)$\frac{2}{e^4}≤k<\frac{1}{2e}$時(shí),函數(shù)g(x)在$[\frac{1}{e},{e^2}]$上有2個(gè)零點(diǎn)       …(4分)

點(diǎn)評 本題考查了曲線的切線方程問題,考查函數(shù)的單調(diào)性、最值問題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問題,是一道綜合題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.函數(shù)f(x)=ax3+bsinx+1,若f($\sqrt{3}$)=2,則f(-$\sqrt{3}$)的值為0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.秦九韶算法是中國古代求多項(xiàng)式f(x)=anxn+an-1xn-1+…+a1x+a0的值的優(yōu)秀算法,直到今天仍很先進(jìn),若f(x)=6x5-2x4+20x3-1000x2+300x+70,則利用秦九韶算法易求得f(7)=100170.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.某校為全面實(shí)施素質(zhì)教育,大力發(fā)展學(xué)生社團(tuán),高一年級的五名同學(xué)準(zhǔn)備參加“文學(xué)社”、“魔術(shù)社”、“思辨社”、“公益社”四個(gè)社團(tuán),若每個(gè)社團(tuán)至少有一名同學(xué)參加,每名同學(xué)必須參加且只能參加一個(gè)社團(tuán),同學(xué)甲不參加“魔術(shù)社”,同學(xué)乙與同學(xué)丙不在同一個(gè)社團(tuán),則不同參加方法的種數(shù)為(  )
A.72B.162C.180D.216

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=lnx
(Ⅰ)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)證明:當(dāng)x>1時(shí),f(x)<x-1
(Ⅲ)設(shè)h(x)=f(x)-k(x-1),若h(x)存在最大值,且當(dāng)最大值大于2k-2時(shí),確定實(shí)數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.函數(shù)f(x)=lnx-x在區(qū)間(0,e](e為自然對數(shù)的底)上的最大值為( 。
A.-1B.0C.1D.1-e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=-alnx+(a+1)x-$\frac{1}{2}{x^2}$(a>0).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)若f(x)≥-$\frac{1}{2}{x^2}$+ax+b恒成立,求$a∈[{\frac{1}{2},1}]$時(shí),實(shí)數(shù)b的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知拋物線C1的方程為:x2=4y,圓C的方程為:x2+(y+r)2=r2(r>0),直線l為拋物線C1和圓C2的公共切線,切點(diǎn)分別為A及C′,F(xiàn)為拋物線C1的焦點(diǎn),連結(jié)A,F(xiàn)交拋物線于點(diǎn)B.
(1)當(dāng)r=1時(shí),求直線l的方程;
(2)用r表示△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點(diǎn)P(20,b)是拋物線x2=2py(p>0)上一點(diǎn),焦點(diǎn)為F,|PF|=25,則該拋物線的方程為( 。
A.x2=20yB.x2=40yC.x2=20y或x2=40yD.x2=20y或x2=80y

查看答案和解析>>

同步練習(xí)冊答案