| A. | 0 | B. | 1 | C. | 2 | D. | 不確定 |
分析 利用余弦定理,結(jié)合三角形的面積,求出a,b,c,然后求解函數(shù)零點(diǎn)個(gè)數(shù).
解答 解:a,b,c分別為△ABC三個(gè)內(nèi)角A,B,C的對(duì)邊,
(sinA+sinB)(a-b)=(sinC-sinB)c,
由正弦定理可得,(a+b)(a-b)=(c-b)c,可得a2=b2+c2-bc,
可得cosA=$\frac{1}{2}$,sinA=$\frac{\sqrt{3}}{2}$,S△ABC=$\sqrt{3}$,$\sqrt{3}$=$\frac{1}{2}bcsinA$,可得bc=4,又c=4b,
解得c=4,b=1,則a=$\sqrt{13}$.
函數(shù)f(x)=bx2-ax+c=x2-$\sqrt{13}$x+4,函數(shù)的開口向上,
△=13-16=-3<0,二次函數(shù)與x軸沒有交點(diǎn),
所以函數(shù)的零點(diǎn)個(gè)數(shù)為0.
點(diǎn)評(píng) 此題考查了正弦、余弦定理的應(yīng)用,二次函數(shù)的簡單性質(zhì)的應(yīng)用,函數(shù)零點(diǎn)的求法,熟練掌握定理是解本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{3i}{5}$ | B. | $-\frac{3i}{5}$ | C. | i | D. | -i |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 對(duì)任意x∈R,使得x2<0 | B. | 不存在x∈R,使得x2<0 | ||
| C. | 存在x0∈R,都有$x_0^2≥0$ | D. | 存在x0∈R,都有$x_0^2<0$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 10m | B. | 30m | C. | 10m | D. | 10m |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{38π}{3}$ | B. | $\frac{19π}{3}$ | C. | $\frac{13π}{3}$ | D. | $\frac{11π}{3}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com