| A. | (1,6) | B. | (2,36) | C. | (4,20) | D. | (4,36) |
分析 由基本不等式得a=m+n$≥2\sqrt{mn}$,b=$\sqrt{{m^2}+14mn+{n^2}}$$≥4\sqrt{mn}$,由余弦定理得c2=a2+b2-2accosC,由此能求出實數(shù)k的取值范圍.
解答 解:∵正實數(shù)m,n,
∴a=m+n$≥2\sqrt{mn}$,b=$\sqrt{{m^2}+14mn+{n^2}}$$≥4\sqrt{mn}$,
∵其第三條邊長為c,且c滿足c2=k•mn,
∴c2=a2+b2-2abcosC
≥4mn+16mn-16mncosC,
∵-1≤cosC≤1,
∴4kmn≤c2≤36mn,
∴實數(shù)k的取值范圍為(4,36).
故選:D.
點評 本題考查實數(shù)的取值范圍的求法,是中檔題,解題時要認真審題,注意基本不等式和余弦定理的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | a-b>0 | B. | ac<bc | C. | a2>b2 | D. | $\frac{1}{a}$<$\frac{1}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{5π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | $\frac{π}{24}$ | B. | $\frac{π}{12}$ | C. | $\frac{π}{8}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com