【題目】已知數(shù)列
滿足
,
時,
.
(1)當(dāng)
時,求數(shù)列
的前
項(xiàng)和
;
(2)當(dāng)
時,求證:對任意
,
為定值.
【答案】(1)
.(2)見解析
【解析】
(1)根據(jù)題意首先證明出該數(shù)列
為等比數(shù)列,并把數(shù)值代入到等比數(shù)列的前
項(xiàng)和公式計(jì)算出結(jié)果即可.
(2)由已知可證出數(shù)列
的通項(xiàng)公式,進(jìn)而分析可得出這是一個等差等比結(jié)構(gòu),利用錯位相減法求和可到
,進(jìn)而得到
的通項(xiàng)公式,再對
分情況然后結(jié)合數(shù)學(xué)歸納法對上式進(jìn)行推理證明即可.
解:(1)當(dāng)
時,
.
數(shù)列
是以
,公比為2的等比數(shù)列.
所以
.
(2)當(dāng)
時,
時,![]()
∴
.
令
,∴![]()
∴
①
,
這是一個等差乘等比結(jié)構(gòu),利用錯位相減法求和
由
②
兩式①②相減得![]()
![]()
∴![]()
∴于是![]()
∴
.
,
為定值,
時,也滿足,
因此,對任意
,
為定值3.
(2)(數(shù)學(xué)歸納法)令
,
當(dāng)
時,
.
假設(shè)
時命題成立,即
.
即![]()
由題設(shè)![]()
.
所以
,即
時,命題也成立
根據(jù)數(shù)學(xué)歸納原理,所命題得證.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
已知平面直角坐標(biāo)系
,以
為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系,
點(diǎn)的極坐標(biāo)為
,曲線
的參數(shù)方程為
(
為參數(shù)).
(1)寫出點(diǎn)
的直角坐標(biāo)及曲線
的直角坐標(biāo)方程;
(2)若
為曲線
上的動點(diǎn),求
的中點(diǎn)
到直線
:
的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的右焦點(diǎn)F到左頂點(diǎn)的距離為3.
(1)求橢圓C的方程;
(2)設(shè)O是坐標(biāo)原點(diǎn),過點(diǎn)F的直線與橢圓C交于A,B兩點(diǎn)(A,B不在x軸上),若
,延長AO交橢圓與點(diǎn)G,求四邊形AGBE的面積S的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】自湖北武漢爆發(fā)新型冠狀病毒肺炎疫情以來,各地醫(yī)療物資缺乏,各生產(chǎn)企業(yè)紛紛加班加點(diǎn)生產(chǎn),某企業(yè)準(zhǔn)備購買三臺口罩生產(chǎn)設(shè)備,型號分別為A,B,C,已知這三臺設(shè)備均使用同一種易耗品,提供設(shè)備的商家規(guī)定:可以在購買設(shè)備的同時購買該易耗品,每件易耗品的價格為100元;也可以在設(shè)備使用過程中,隨時單獨(dú)購買易耗品,每件易耗品的價格為200元.為了決策在購買設(shè)備時應(yīng)同時購買的易耗品的件數(shù),該單位調(diào)查了這三種型號的設(shè)備各60臺,調(diào)查每臺設(shè)備在一個月中使用的易耗品的件數(shù),并得到統(tǒng)計(jì)表如下所示.
每臺設(shè)備一個月中使用的易耗品的件數(shù) | 6 | 7 | 8 | |
頻數(shù) | 型號A | 30 | 30 | 0 |
型號B | 20 | 30 | 10 | |
型號C | 0 | 45 | 15 | |
將調(diào)查的每種型號的設(shè)備的頻率視為概率,各臺設(shè)備在易耗品的使用上相互獨(dú)立.
(1)求該單位一個月中A,B,C三臺設(shè)備使用的易耗品總數(shù)超過21件(不包括21件)的概率;
(2)以該單位一個月購買易耗品所需總費(fèi)用的期望值為決策依據(jù),該單位在購買設(shè)備時應(yīng)同時購買20件還是21件易耗品?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為
(其中t為參數(shù)).以坐標(biāo)原點(diǎn)O為極點(diǎn),x軸非負(fù)半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為
.
(1)求l和C的直角坐標(biāo)方程.
(2)設(shè)點(diǎn)
,直線l交曲線C于A,B兩點(diǎn),求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
.
(Ⅰ)若
,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)設(shè)
.若
在
上恒成立,求實(shí)數(shù)
的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com