【題目】已知橢圓
:
(
)的焦距為
,點
在
上.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設點
在
上,點
的軌跡為曲線
,過原點作直線
與曲線
交于
、
兩點,點
,證明:
為定值,并求出定值.
【答案】(1)
(2)3
【解析】試題分析:(Ⅰ)由題意知:c=
,根據(jù)橢圓定義可求得a,根據(jù)b2=a2-c2可得b;(Ⅱ)分直線
的斜率為0,不為0兩種情況進行討論:當直線
的斜率為0時直接按照向量數(shù)量積運算即可;當直線
的斜率不為0時,設直線
的方程為:
,
,
.聯(lián)立直線方程與橢圓方程消掉y得x的一元二次方程,由韋達定理及向量數(shù)量積公式代入運算可得結論;
試題解析:
(Ⅰ)由已知得
,解得
,
橢圓
的方程為
.
(Ⅱ)由條件可得
,
曲線
的方程為
.
當直線
的斜率不存在時,不妨設
,
,則
,
,
;
當直線
的斜率存在時,設其方程為
,可設點
,
,
則
,
,
,
把點
代入曲線
的方程
得
,
.
綜上可知,
.
科目:高中數(shù)學 來源: 題型:
【題目】如圖1是定義在R上的二次函數(shù)f(x)的部分圖像,圖2是函數(shù)
的部分圖像。
![]()
(Ⅰ) 分別求出函數(shù)
和
的解析式;
(Ⅱ)如果函數(shù)
在區(qū)間
上是單調(diào)遞減函數(shù),求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高三數(shù)學競賽初賽考試后,對部分考生的成績進行統(tǒng)計(考生成績均不低于90分,滿分150分),將成績按如下方式分成六組,若第四、五、六組的人數(shù)依次成等差數(shù)列,且第六組有4人.
![]()
(1)請補充完整頻率分布直方圖,并估計這組數(shù)據(jù)的平均數(shù)M;
(2)現(xiàn)根據(jù)初賽成績從第四組和第六組中任意選2人,記他們的成績分別為
.若
,則稱此二人為“黃金幫扶組”.試求選出的二人為“黃金幫扶組”的概率
;
(3)以此樣本的頻率當做概率,現(xiàn)隨機在這所有考生中選出3名學生,求成績不低于120分的人數(shù)
的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】小明和爸爸媽媽、爺爺奶奶一同參加《中國詩詞大會》的現(xiàn)場錄制,5人坐成一排.若小 明的父母至少有一人與小明相鄰,則不同的坐法總數(shù)為________.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】2015年7月9日21時15分,臺風“蓮花”在我國廣東省陸豐市甲東鎮(zhèn)沿海登陸,給當?shù)厝嗣裨斐闪司薮蟮呢敭a(chǎn)損失,適逢暑假,小張調(diào)查了當?shù)啬承^(qū)的100戶居民由于臺風造成的經(jīng)濟損失,將收集的數(shù)據(jù)分成
,
,
,
,
五組,并作出如下頻率分布直方圖(圖1):
(Ⅰ)臺風后居委會號召小區(qū)居民為臺風重災區(qū)捐款,小張調(diào)查的100戶居民捐款情況如右下表格,在圖2表格空白處填寫正確數(shù)字,并說明是否有
以上的把握認為捐款數(shù)額多于或少于500元和自身經(jīng)濟損失是否到4000元有關?
![]()
(Ⅱ)將上述調(diào)查所得到的頻率視為概率. 現(xiàn)在從該地區(qū)大量受災居民中,采用隨機抽樣方法每次抽取1戶居民,抽取3次,記被抽取的3戶居民中自身經(jīng)濟損失超過4000元的人數(shù)為
. 若每次抽取的結果是相互獨立的,求
的分布列,期望
和方差
.
附:臨界值表
| 0.10 | 0.05 | 0.025 |
| 2.706 | 3.841 | 5.024 |
隨機量變
![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知在平面直角坐標系中,
是坐標原點,動圓
經(jīng)過點
,且與直線
相切.
(1)求動圓圓心
的軌跡方程
;
(2)過
的直線
交曲線
于
兩點,過
作曲線
的切線
,直線
交于點
,求
的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了解某班學生喜愛打籃球是否與性別有關,對本班50人進行了問卷調(diào)查得到了如下列表:
喜愛打籃球 | 不喜愛打籃球 | 合計 | |
男生 | 5 | ||
女生 | 10 | ||
合計 | 50 |
已知在全班50人中隨機抽取1人,抽到喜愛打籃球的學生的概率為
.
(1)請將上表補充完整(不用寫計算過程);
(2)能否有99.5%的把握認為喜愛打籃球與性別有關?說明你的理由.
下面的臨界值表供參考:
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(參考公式:
,其中
)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
.
(1)若
,求曲線
在點
處的切線;
(2)若函數(shù)
在其定義域內(nèi)為增函數(shù),求正實數(shù)
的取值范圍;
(3)設函數(shù)
,若在
上至少存在一點
,使得
成立,求實數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某品牌手機銷售商今年1,2,3月份的銷售量分別是1萬部,1.2萬部,1.3萬部,為估計以后每個月的銷售量,以這三個月的銷售為依據(jù),用一個函數(shù)模擬該品牌手機的銷售量y(單位:萬部)與月份x之間的關系,現(xiàn)從二次函數(shù)
或函數(shù)
中選用一個效果好的函數(shù)行模擬,如果4月份的銷售量為1.37萬件,則5月份的銷售量為__________萬件.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com