已知橢圓
,
、
是橢圓上的兩點,線段
的垂直平分線與
軸相交于點
.證明:![]()
科目:高中數(shù)學(xué) 來源: 題型:
| x2 |
| a2 |
| y2 |
| b2 |
| 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
(14分)已知橢圓
的中心在原點,焦點在
軸上,離心率為
,且橢圓經(jīng)過圓C:
的圓心C。
(Ⅰ)求橢圓
的方程;
(Ⅱ) 設(shè)
是橢圓
上的一點,過點
的直線
交
軸于點
,交
軸于點
,若
,求直線
的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆廣東惠陽一中實驗學(xué)校高二6月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分14分
已知橢圓
:
的離心率為
,以原點為圓心,
橢圓的短半軸長為半徑的圓與直線
相切.
⑴求橢圓C的方程;
⑵設(shè)
,
、
是橢圓
上關(guān)于
軸對稱的任意兩個不同的點,連結(jié)
交橢圓![]()
于另一點
,求直線
的斜率的取值范圍;
⑶在⑵的條件下,證明直線
與
軸相交于定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江西省高三第四次月考文科數(shù)學(xué) 題型:解答題
(本小題滿分14分)已知橢圓
:
的離心率為
,以原點為圓心,橢圓的短半軸長為半徑的圓與直線
相切.
⑴求橢圓C的方程;
⑵設(shè)
,
、
是橢圓
上關(guān)于
軸對稱的任意兩個不同的點,連結(jié)
交橢圓
于另一點
,求直線
的斜率的取值范圍;
⑶在⑵的條件下,證明直線
與
軸相交于定點.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com