欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

10.將側棱相互垂直的三棱錐稱為“直角三棱錐”,三棱錐的側面和底面分別叫直角三棱錐的“直角面和斜面”;過三棱錐頂點及斜面任兩邊中點的截面均稱為斜面的“中面”.已知直角三角形具有性質:“斜邊的中線長等于斜邊邊長的一半”.仿照此性質寫出直角三棱錐具有的性質( 。
A.直角三棱錐中,每個斜面的中面面積等于斜面面積的三分之一
B.直角三棱錐中,每個斜面的中面面積等于斜面面積的四分之一
C.直角三棱錐中,每個斜面的中面面積等于斜面面積的二分之一
D.直角三棱錐中,每個斜面的中面面積與斜面面積的關系不確定

分析 對于“直角三棱錐”,類比直角三角形的性質,可得斜面的中面面積等于斜面面積的四分之一.

解答 解:由于直角三角形具有以下性質:斜邊的中線長等于斜邊邊長的一半,
故對于“直角三棱錐”,結合相似三角形的面積比等于相似比的平方可得以下性質:斜面的中面面積等于斜面面積的四分之一.
故選:B.

點評 本題主要考查的知識點是類比推理,由平面圖形的性質向空間物體的性質進行類比時,常用的思路有:由平面圖形中點的性質類比推理出空間里的線的性質,由平面圖形中線的性質類比推理出空間中面的性質,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

20.設a=(lg3)2,b=30.3,c=lg$\sqrt{3}$,則( 。
A.a<c<bB.c<a<bC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已數(shù)列{an}滿足a1=1,an+1-$\frac{1}{2}$an=$\frac{1}{{2}^{n}}$,bn=$\frac{1}{tan\frac{{a}_{n}}{{n}^{2}}}$•Sn是數(shù)列{bn}的前n項和.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)求證;對任意n∈N*.Sn<(n-1)•2n+1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知平面上四點:A(4,3),B(5,2),C(1,0),D(2,3)
(1)證明:A、B、C、D四點共圓;
(2)已知點N是(1)中圓上的一個動點,點P(6,0),點Q(x,y)是線段PN的三等分點且距點P近一些,求點Q的坐標滿足的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知集合A={-3,m+1},B={2m-1,m-3},若A∩B={-3},求實數(shù)m的值并求A∪B.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.不等式$\frac{1}{x-2}$>1的解集為{x|2<x<3}.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知sinθ=$\frac{m-3}{m+5}$,cosθ=$\frac{4-2m}{m+5}$($\frac{π}{2}$<θ<π),則tanθ=( 。
A.$-\frac{5}{12}$B.$\frac{5}{12}$C.$-\frac{3}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.已知過點F(0,1),且斜率為k的直線l與拋物線E:x2=4y相交于A,B兩點,與圓F:x2+(y-1)2=1相交于C,D兩點,其中,點A,C在第一象限.
(1)求|AC|×|BD|的值;
(2)過點C作圓F的切線l,當$\frac{\sqrt{2}}{4}$≤k≤$\frac{\sqrt{3}}{3}$時,求直線l1在y軸上的截距的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.總體由編號為01,02,…,29,30的30個個體組成.利用下面的隨機數(shù)表選取4個個體,選取方法是如下從隨機數(shù)表第2行的第2列數(shù)字0開始由左到右依次選取兩個數(shù)字,則選出來的第3個個體的編號為20.
78 16 65 72 08  02 63 14 07 02  43 69 69 38 74
32 04 94 23 49  55 80 20 36 35  48 69 97 28 01

查看答案和解析>>

同步練習冊答案