分析 作出不等式組$\left\{\begin{array}{l}x+y≥4\\ x≤4\\ y≤3\end{array}\right.$對(duì)應(yīng)的平面區(qū)域,利用x2+y2的幾何意義求最值.
解答
解:設(shè)z=x2+y2,則z的幾何意義為動(dòng)點(diǎn)P(x,y)到原點(diǎn)距離的平方.
作出不等式組$\left\{\begin{array}{l}x+y≥4\\ x≤4\\ y≤3\end{array}\right.$對(duì)應(yīng)的平面區(qū)域如圖:
由圖象可知點(diǎn)A(4,3)到原點(diǎn)的距離最大,最大值為:25.
原點(diǎn)到直線x+y-4=0的距離最小,d=$\frac{4}{\sqrt{{1}^{2}+{1}^{2}}}$=$\frac{4}{\sqrt{2}}$
所以z=x2+y2的最小值為z=8.
x2+y2的取值范圍是[8,25].
故答案為:[8,25].
點(diǎn)評(píng) 本題主要考查點(diǎn)到直線的距離公式,以及簡(jiǎn)單線性規(guī)劃的應(yīng)用,利用目標(biāo)函數(shù)的幾何意義是解決線性規(guī)劃內(nèi)容的基本方法,利用數(shù)形結(jié)合是解決本題的關(guān)鍵.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | a⊥β且l∥β | B. | a⊥β且l∥β | C. | α∥β且l∥β | D. | a⊥β且l⊥β |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com