已知向量m=(2cosx,
cosx-sinx),n=(sin(x+
),sinx),且滿足f(x)=m·n.
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)設(shè)△ABC的內(nèi)角A滿足f(A)=2,a、b、c分別為角A、B、C所對(duì)的邊,且
·
=
,求邊BC的最小值.
(1)[kπ-
,kπ+
](k∈Z)
(2)
-1
【解析】【解析】
(1)f(x)=2cosx(
sinx+
cosx)+
sinx·cosx-sin2x=2
sinx·cosx+cos2x-sin2x=
sin2x+cos2x=2sin(2x+
),
由2kπ-
≤2x+
≤2kπ+
,k∈Z,
得kπ-
≤x≤kπ+
,k∈Z,
故所求單調(diào)遞增區(qū)間為[kπ-
,kπ+
](k∈Z).
(2)由f(A)=2sin(2A+
)=2,
0<A<π得A=
,
∵
·
=
,即bccosA=
,
∴bc=2,
又△ABC中,
a2=b2+c2-2bccosA=b2+c2-
bc≥2bc-
bc=(2-
)bc,
∴
=(2-
)×2=4-2
,
∴amin=
=
-1.
即邊BC的最小值為
-1.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-4數(shù)列求和(解析版) 題型:填空題
若數(shù)列{an}是正項(xiàng)數(shù)列,且
+
+…+
=n2+3n(n∈N*),則
+
+…+
=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):5-1數(shù)列的概念與簡(jiǎn)單表示法(解析版) 題型:解答題
設(shè)數(shù)列{an}的前n項(xiàng)和為Sn.已知a1=a,an+1=Sn+3n,n∈N*.
(1)設(shè)bn=Sn-3n,求數(shù)列{bn}的通項(xiàng)公式;
(2)若an+1≥an,n∈N*,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-4數(shù)系的擴(kuò)充與復(fù)數(shù)的引入(解析版) 題型:填空題
已知復(fù)數(shù)z滿足(1+i)z=1+
i(i是虛數(shù)單位),則|z|=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-4數(shù)系的擴(kuò)充與復(fù)數(shù)的引入(解析版) 題型:選擇題
已知集合M={i,i2,
,
},i是虛數(shù)單位,Z為整數(shù)集,則集合Z∩M中的元素個(gè)數(shù)是( )
A.3 B.2 C.1 D.0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-3平面向量的數(shù)量積及應(yīng)用(解析版) 題型:填空題
已知|a|=|b|=2,(a+2b)·(a-b)=-2,則a與b的夾角為_(kāi)_______.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-2平面向量的基本定理及坐標(biāo)表示(解析版) 題型:解答題
在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,已知向量m=(cos
,sin
),n=(cos
,sin
),且滿足|m+n|=
.
(1)求角A的大。
(2)若|
|+|
|=
|
|,試判斷△ABC的形狀.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):4-1向量的概念及運(yùn)算(解析版) 題型:填空題
在△ABC中,若AB=1,AC=
,|
+
|=|
|,則
=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015高考數(shù)學(xué)(理)一輪配套特訓(xùn):3-7正弦定理和余弦定理(解析版) 題型:選擇題
已知△ABC中,AB=
,BC=1,sinC=
cosC,則△ABC的面積為( )
A.
B.
C.
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com