分析 由已知中可以得到函數(shù)f(x)的圖象關(guān)于直線x=2對稱,結(jié)合函數(shù)是偶函數(shù),及x∈[-2,0]時的解析式,可畫出函數(shù)的圖象,將方程f(x)-loga(x+2)=0恰有3個不同的實數(shù)解,轉(zhuǎn)化為函數(shù)f(x)的與函數(shù)y=loga(x+2)的圖象恰有3個不同的交點,數(shù)形結(jié)合即可得到實數(shù)a的取值范圍.
解答
解:∵對于任意的x∈R,都有f(2-x)=f(x+2),
∴函數(shù)f(x)的圖象關(guān)于直線x=2對稱,
又∵當x∈[-2,0]時,f(x)=($\frac{1}{2}$)x-1,且函數(shù)f(x)是定義在R上的偶函數(shù),
若在區(qū)間(-2,6)內(nèi)關(guān)于x的方程f(x)-loga(x+2)=0恰有3個不同的實數(shù)解,
則函數(shù)y=f(x)與y=loga(x+2)在區(qū)間(-2,6)上有三個不同的交點,如下圖所示:
又f(-2)=f(2)=3,則有l(wèi)oga(2+2)<3,且loga(6+2)>3,
解得:$\root{3}{4}$<a<2,
故答案為:($\root{3}{4}$,2).
點評 本題考查的知識點是根的存在性及根的個數(shù)判斷,指數(shù)函數(shù)與對數(shù)函數(shù)的圖象與性質(zhì),其中根據(jù)方程的解與函數(shù)的零點之間的關(guān)系,將方程根的問題轉(zhuǎn)化為函數(shù)零點問題,是解答本題的關(guān)鍵,體現(xiàn)了轉(zhuǎn)化和數(shù)形結(jié)合的數(shù)學思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | ||MF1|-|MF2||>24 | B. | ||MF1|-|MF2||=24 | C. | ||MF1|-|MF2||<24 | D. | 以上都有可能 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | α>β | B. | α<β | C. | α2>β2 | D. | α+β>0 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com