| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2015屆內(nèi)蒙古高一下學(xué)期期中考試文科數(shù)學(xué)卷(解析版) 題型:選擇題
如圖,若圖中直線
1,
2,
3的斜率分別為k1,
k2, k3,則
![]()
A.k1<k2<k3 B.k3<k1<k2 C.k3<k2<k1 D.k1<k3<k2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013年全國(guó)普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(福建卷解析版) 題型:解答題
如圖,在正方形
中,
為坐標(biāo)原點(diǎn),點(diǎn)
的坐標(biāo)為
,點(diǎn)
的坐標(biāo)為
,分別將線段
和
十等分,分點(diǎn)分別記為
和
,連接
,過(guò)
作
軸的垂線與
交于點(diǎn)
。
![]()
(Ⅰ)求證:點(diǎn)
都在同一條拋物線上,并求拋物線
的方程;
(Ⅱ)過(guò)點(diǎn)
作直線
與拋物線E交于不同的兩點(diǎn)
, 若
與
的面積之比為4:1,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2015屆河南安陽(yáng)一中高一奧賽班第二次階段考試數(shù)學(xué)試題(解析版) 題型:解答題
(本小題滿分12分)
如圖,四棱錐P-ABCD中,PA⊥底面ABCD,底面ABCD為直角梯形,AB∥CD,BA⊥AD,且CD=2AB.
![]()
(1)若AB=AD=
,直線PB與CD所成角為
,
①求四棱錐P-ABCD的體積;
②求二面角P-CD-B的大;
(2)若E為線段PC上一點(diǎn),試確定E點(diǎn)的位置,使得平面EBD垂直于平面ABCD,并說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
![]()
(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰與直線l也相切,切點(diǎn)為T(mén),求橢圓的方程及點(diǎn)T的坐標(biāo);
(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過(guò)點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記
在x軸正方向上的投影為p,且(
)p2=m,m∈[
,
],求(1)中切點(diǎn)T到直線PQ的距離的最小值.
(文)如圖,與拋物線x2=-4y相切于點(diǎn)A(-4,-4)的直線l分別交x軸、y軸于點(diǎn)F、E,過(guò)點(diǎn)E作y軸的垂線l0.
![]()
(1)若以l0為一條準(zhǔn)線,中心在坐標(biāo)原點(diǎn)的橢圓恰好過(guò)點(diǎn)F,求橢圓的方程;
(2)若直線l與雙曲線6x2-λy2=8的兩個(gè)交點(diǎn)為M、N,且點(diǎn)A為線段MN的中點(diǎn),又過(guò)點(diǎn)E的直線與該雙曲線的兩支分別交于P、Q兩點(diǎn),記
在x軸正方向上的投影為p,且(
)p2=m,m∈[
,
],求直線PQ的斜率的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com