欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

(理)函數(shù)y=的定義域是________________.

答案:(理)(-∞,3)∪(3,4)  由得x<4且x≠3.∴x∈(-∞,3)∪(3,4).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于定義在D上的函數(shù)y=f(x),若同時滿足.
①存在閉區(qū)間[a,b]⊆D,使得任取x1∈[a,b],都有f(x1)=c (c是常數(shù));
②對于D內(nèi)任意x2,當x2∉[a,b]時總有f(x2)>c稱f(x)為“平底型”函數(shù).
(1)(理)判斷f1(x)=|x-1|+|x-2|,f2(x)=x+|x-2|是否是“平底型”函數(shù)?簡要說明理由;
(文)判斷f1(x)=|x-1|+|x-2|,f2(x)=x-|x-3|是否是“平底型”函數(shù)?簡要說明理由;
(2)(理)設f(x)是(1)中的“平底型”函數(shù),若|t-k|+|t+k|≥|k|•f(x),k∈R且k≠0,對一切t∈R恒成立,求實數(shù)x的范圍;
(文)設f(x)是(1)中的“平底型”函數(shù),若|t-1|+|t+1|≥f(x),對一切t∈R恒成立,求實數(shù)x的范圍;
(3)(理)若F(x)=mx+
x2+2x+n
,x∈[-2,+∞)是“平底型”函數(shù),求m和n的值;
(文)若F(x)=m|x-1|+n|x-2|是“平底型”函數(shù),求m和n滿足的條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

根據(jù)定義在集合A上的函數(shù)y=f(x),構造一個數(shù)列發(fā)生器,其工作原理如下:①輸入數(shù)據(jù)x0∈A,計算出x1=f(x0);②若x1∉A,則數(shù)列發(fā)生器結束工作;若x1∈A,則輸出x1,并將x1反饋回輸入端,再計算出x2=f(x1),并依此規(guī)律繼續(xù)下去.若集合A={x|0<x<1}},f(x)=
mx
m+1-x
(m∈N*).
(理)(1)求證:對任意x0∈A,此數(shù)列發(fā)生器都可以產(chǎn)生一個無窮數(shù)列{xn};
(2)若x0=
1
2
,記an=
1
xn
(n∈N*),求數(shù)列{an}的通項公式;
(3)在(2)的條件下,證明:3≤am<4(n∈N*).
(文)(1)求證:對任意x0∈A,此數(shù)列發(fā)生器都可以產(chǎn)生一個無窮數(shù)列{xn};
(2)若m=1,求證:數(shù)列{xn}單調遞減;
(3)若x0=
1
2
,記an=
1
xn
(n∈N*),求數(shù)列{an}的通項公式.

查看答案和解析>>

科目:高中數(shù)學 來源:2006沖刺數(shù)學(一)、2006年普通高等學校招生全國統(tǒng)一考試數(shù)學試題 題型:022

(理)函數(shù)y=f(x)是定義在無限集合D上的函數(shù),并且滿足對于任意的x∈D,

①若,則=________;

②試寫出滿足下面條件的一個函數(shù)y=f(x):存在,使得由組成的集合有且僅有兩個元素,這樣的函數(shù)可以是f(x)=________.(只需寫出一個滿足條件的函數(shù))

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年雅禮中學月考理)給出定義:若(其中m為整數(shù)),則m 叫做離實數(shù)x最近的整數(shù),記作= m. 在此基礎上給出下列關于函數(shù)的四個命題:

①函數(shù)y=的定義域為R,值域為

②函數(shù)y=的圖像關于直線)對稱;

③函數(shù)y=是周期函數(shù),最小正周期為1;

④函數(shù)y=上是增函數(shù).

其中正確的命題個數(shù)為

    A.1     。拢病     。茫场      。模

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(09年湖北黃岡聯(lián)考理)給出定義:若(其中m為整數(shù)),則m 叫做離實數(shù)x最近的整數(shù),記作= m. 在此基礎上給出下列關于函數(shù)的四個命題:    

①函數(shù)y=的定義域為R,值域為

②函數(shù)y=的圖像關于直線)對稱;

③函數(shù)y=是周期函數(shù),最小正周期為1;

④函數(shù)y=上是增函數(shù)。

其中正確的命題的序號是(    )

A. ①         B.、冖       C ①②③       D ①④

查看答案和解析>>

同步練習冊答案