欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知函數(shù)f(x),當x,y∈R時,恒有f(x+y)=f(x)+f(y).(1)求證:f(x)是奇函數(shù);

(2)如果x∈R+,f(x)<0,并且f(1)=-,試求f(x)在區(qū)間[-2,6]上的最值.

(Ⅰ) 見解析   (Ⅱ) f(x)在區(qū)間[-2,6]上的最大值為1,最小值為-3.


解析:

(1)證明:  ∵函數(shù)定義域為R,其定義域關于原點對稱.

∵f(x+y)=f(x)+f(y),令y=-x,∴f(0)=f(x)+f(-x).令x=y=0,

∴f(0)=f(0)+f(0),得f(0)=0.∴f(x)+f(-x)=0,得f(-x)=-f(x),∴f(x)為奇函數(shù).

(2)解:方法一  設x,y∈R+,∵f(x+y)=f(x)+f(y),

∴f(x+y)-f(x)=f(y).∵x∈R+,f(x)<0,

∴f(x+y)-f(x)<0,∴f(x+y)<f(x).

∵x+y>x,∴f(x)在(0,+∞)上是減函數(shù).又∵f(x)為奇函數(shù),f(0)=0,

∴f(x)在(-∞,+∞)上是減函數(shù).∴f(-2)為最大值,f(6)為最小值.

∵f(1)=-,∴f(-2)=-f(2)=-2f(1)=1,f(6)=2f(3)=2[f(1)+f(2)]=-3.

∴所求f(x)在區(qū)間[-2,6]上的最大值為1,最小值為-3.

方法二  設x1<x2,且x1,x2∈R.則f(x2-x1)=f[x2+(-x1)]=f(x2)+f(-x1)=f(x2)-f(x1).

∵x2-x1>0,∴f(x2-x1)<0.∴f(x2)-f(x1)<0.即f(x)在R上單調(diào)遞減.

∴f(-2)為最大值,f(6)為最小值.∵f(1)=-,∴f(-2)=-f(2)=-2f(1)=1,

f(6)=2f(3)=2[f(1)+f(2)]=-3.∴所求f(x)在區(qū)間[-2,6]上的最大值為1,最小值為-3.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=
1 ( 當x為有理數(shù)時)
0(當x為無理數(shù)時)
,給出下列關于f(x)的性質(zhì):
①f(x)是周期函數(shù),3是它的一個周期;②f(x)是偶函數(shù);③方程f(x)=cosx有有理根;④方程f[f(x)]=f(x)與方程f(x)=1的解集相同
正確的個數(shù)為( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=,求當x為何值時,函數(shù)有最大值?

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=
1 ( 當x為有理數(shù)時)
0(當x為無理數(shù)時)
,給出下列關于f(x)的性質(zhì):
①f(x)是周期函數(shù),3是它的一個周期;②f(x)是偶函數(shù);③方程f(x)=cosx有有理根;④方程f[f(x)]=f(x)與方程f(x)=1的解集相同
正確的個數(shù)為( 。
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=.

(1)當a>0時,解關于x的不等式f(x)<0;

(2)若不等式f(x)≥f(1)對x∈R恒成立,求f(x)的單調(diào)遞減區(qū)間.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x),當xy∈R時,恒有f(xy)=f(x)+f(y).

(1)求證:f(x)是奇函數(shù);

(2)如果x>0時,f(x)<0,并且f(1)=-,試求f(x)在區(qū)間[-2,6]上的最值.

查看答案和解析>>

同步練習冊答案