【題目】已知橢圓
的左、右焦點(diǎn)分別為
,
,離心率為
,過
作直線
與橢圓
交于
,
兩點(diǎn),
的周長為8.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)問:
的內(nèi)切圓面積是否有最大值?若有,試求出最大值;若沒有,說明理由.
【答案】(1)
;(2)![]()
【解析】
(1)由離心率得
,再利用
的周長為8得
,從而得到
的值,進(jìn)而得到橢圓的方程;
(2)將
的內(nèi)切圓面積的最大值轉(zhuǎn)化為求
的值最大,設(shè)
,
,直線
,從而將面積表示成關(guān)于
的函數(shù),再利用換元法研究函數(shù)的最值.
(1)
離心率為
,![]()
,
![]()
的周長為8,![]()
,得
,
![]()
,
,
因此,橢圓
的標(biāo)準(zhǔn)方程為
.
(2)設(shè)
的內(nèi)切圓半徑為
,![]()
,
又![]()
,![]()
,
要使
的內(nèi)切圓面積最大,只需
的值最大.
設(shè)
,
,直線
,
聯(lián)立
消去
得:
,
易得
,且
,
,
所以![]()
,
設(shè)
,則
,
設(shè)
,
,所以
在
上單調(diào)遞增,
所以當(dāng)
,即
時(shí),
的最大值為3,
此時(shí)
,所以
的內(nèi)切圓面積最大為
.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方體
的棱長為
分別是棱
,
的中點(diǎn),過點(diǎn)
的平面分別與棱
,
交于點(diǎn)
,設(shè)
.給出以下四個(gè)命題:
①平面
與平面
所成角的最大值為45°;
②四邊形
的面積的最小值為
;
③四棱錐
的體積為
;
④點(diǎn)
到平面
的距離的最大值為
.
其中命題正確的序號(hào)為( )
![]()
A.②③④B.②③C.①②④D.③④
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】最近,紀(jì)錄片《美國工廠》引起中美觀眾熱議,大家都認(rèn)識(shí)到,大力發(fā)展制造業(yè),是國家強(qiáng)盛的基礎(chǔ),而產(chǎn)業(yè)工人的年齡老化成為阻礙美國制造業(yè)發(fā)展的障礙,中國應(yīng)未雨綢繆.某工廠有35周歲以上(含35周歲)工人300名,35周歲以下工人200名,為研究工人的日平均生產(chǎn)量是否與年齡有關(guān).現(xiàn)采用分層抽樣的方法,從中抽取了100名工人,先統(tǒng)計(jì)了他們某月的日平均生產(chǎn)件數(shù),然后按工人年齡在“35周歲以上(含35周歲)”和“35周歲以下”分為兩組,在將兩組工人的日平均生產(chǎn)件數(shù)分成5組:
分別加以統(tǒng)計(jì),得到如圖所示的頻率分布直方圖.
![]()
(1)從樣本中日平均生產(chǎn)件數(shù)不足60件的工人中隨機(jī)抽取2人,求至少抽到一名“35周歲以下組”工人的概率.
(2)規(guī)定日平均生產(chǎn)件數(shù)不少于80件者為“生產(chǎn)能手”,請(qǐng)你根據(jù)已知條件完成
的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“生產(chǎn)能手與工人所在的年齡組有關(guān)”?
生產(chǎn)能手 | 非生產(chǎn)能手 | 合計(jì) | |
35歲以下 | |||
35歲以上 | |||
合計(jì) |
附表:![]()
| 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
的圖象關(guān)于直線
對(duì)稱,則( )
A.函數(shù)
為奇函數(shù)
B.函數(shù)
在
上單調(diào)遞增
C.若
,則
的最小值為![]()
D.函數(shù)
的圖象向右平移
個(gè)單位長度得到函數(shù)
的圖象
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】“一帶一路”是“絲綢之路經(jīng)濟(jì)帶”和“21世紀(jì)海上絲綢之路”的簡稱,旨在積極發(fā)展我國與沿線國家經(jīng)濟(jì)合作關(guān)系,共同打造政治互信、經(jīng)濟(jì)融合、文化包容的命運(yùn)共同體.自2013年以來,“一帶一路”建設(shè)成果顯著下圖是2013-2017年,我國對(duì)“一帶一路”沿線國家進(jìn)出口情況統(tǒng)計(jì)圖,下列描述正確的是( ).
![]()
A.這五年,2013年出口額最少
B.這五年,出口總額比進(jìn)口總額多
C.這五年,出口增速前四年逐年下降
D.這五年,2017年進(jìn)口增速最快
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《九章算術(shù)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,卷一《方田》中有如下兩個(gè)問題:
[三三]今有宛田,下周三十步,徑十六步.問為田幾何?
[三四]又有宛田,下周九十九步,徑五十一步.問為田幾何?
翻譯為:[三三]現(xiàn)有扇形田,弧長30步,直徑長16步.問這塊田面積是多少?
[三四]又有一扇形田,弧長99步,直徑長51步.問這塊田面積是多少?
則下列說法正確的是( )
A.問題[三三]中扇形的面積為240平方步B.問題[三四]中扇形的面積為
平方步
C.問題[三三]中扇形的面積為60平方步D.問題[三四]中扇形的面積為
平方步
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系
中,直線
的參數(shù)方程為
(
為參數(shù)),曲線
的參數(shù)方程為
(
為參數(shù)),曲線
與
軸交于
兩點(diǎn).以坐標(biāo)原點(diǎn)
為極點(diǎn),
軸正半軸為極軸建立極坐標(biāo)系.
(1)求直線
的普通方程及曲線
的極坐標(biāo)方程;
(2)若直線
與曲線
在第一象限交于點(diǎn)
,且線段
的中點(diǎn)為
,點(diǎn)
在曲線
上,求
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐
中,底面
是邊長為
的正方形,
是正三角形,CD平面PAD,E,F,G,O分別是PC,PD,BC,AD 的中點(diǎn).
![]()
(Ⅰ)求證:PO平面
;
(Ⅱ)求平面EFG與平面
所成銳二面角的大。
(Ⅲ)線段
上是否存在點(diǎn)
,使得直線
與平面
所成角為
,若存在,求線段
的長度;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知由n(n∈N*)個(gè)正整數(shù)構(gòu)成的集合A={a1,a2,…,an}(a1<a2<…<an,n≥3),記SA=a1+a2+…+an,對(duì)于任意不大于SA的正整數(shù)m,均存在集合A的一個(gè)子集,使得該子集的所有元素之和等于m.
(1)求a1,a2的值;
(2)求證:“a1,a2,…,an成等差數(shù)列”的充要條件是“
”;
(3)若SA=2020,求n的最小值,并指出n取最小值時(shí)an的最大值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com