(10分)已知拋物線的頂點(diǎn)是雙曲線
的中心,而焦點(diǎn)是雙曲線的頂點(diǎn),求拋物線的方程.
,
。
解析試題分析:首先根據(jù)題意,根據(jù)雙曲線的方程得到其頂點(diǎn)和焦點(diǎn)坐標(biāo),進(jìn)而結(jié)合拋物線的標(biāo)準(zhǔn)方程設(shè)出,求解得到。注意焦點(diǎn)的位置不定方程也不定,要討論。
解:由已知:
,
雙曲線的頂點(diǎn)為![]()
,
若拋物線的焦點(diǎn)為
,則
,所以拋物線的方程為![]()
若拋物線的焦點(diǎn)為
,則
,所以拋物線的方程為
。
考點(diǎn):本題主要考查了雙曲線的簡(jiǎn)單幾何性質(zhì)的運(yùn)用,和拋物線方程的求解問(wèn)題。
點(diǎn)評(píng):解決該試題的關(guān)鍵是通過(guò)已知的方程確定出雙曲線的焦點(diǎn)坐標(biāo)和頂點(diǎn)坐標(biāo),進(jìn)而得到拋物線的方程的求解問(wèn)題。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本題滿分10分)
若直線
過(guò)點(diǎn)(0,3)且與拋物線y2=2x只有一個(gè)公共點(diǎn),求該直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知,橢圓C以過(guò)點(diǎn)A(1,
),兩個(gè)焦點(diǎn)為(-1,0)(1,0)?
(1)求橢圓C的方程;
(2)E,F是橢圓C上的兩個(gè)動(dòng)點(diǎn),如果直線AE的斜率與AF的斜率互為相反數(shù),證明直線EF的斜率為定值,并求出這個(gè)定值?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題滿分13分)如圖所示,直線l與拋物線y2=x交于A(x1,y1),B(x2,y2)兩點(diǎn),與x軸交于點(diǎn)M,且y1y2=-1,![]()
(Ⅰ)求證:點(diǎn)
的坐標(biāo)為
;
(Ⅱ)求證:OA⊥OB;
(Ⅲ)求△AOB面積的最小值。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某拋物線形拱橋跨度是20米,拱高4米,在建橋時(shí)每隔4米需用一支柱支撐,求其中最長(zhǎng)的支柱的長(zhǎng). ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知橢圓C的中心在原點(diǎn),焦點(diǎn)在x軸上,它的一個(gè)頂點(diǎn)B恰好是拋物線
的焦點(diǎn),且離心率等于
,直線
與橢圓C交于M,N兩點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)橢圓C的右焦點(diǎn)F是否可以為
的垂心?若可以,求出直線
的方程;若不行,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題15分)設(shè)拋物線
和點(diǎn)
,.斜率為
的直線與拋物線
相交不同的兩個(gè)點(diǎn)
.若點(diǎn)
恰好為
的中點(diǎn).
(1)求拋物線
的方程,
(2) 拋物線
上是否存在異于
的點(diǎn)
,使得經(jīng)過(guò)點(diǎn)
的圓和拋物線
在
處有相同的切線.若存在,求出點(diǎn)
的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
(本小題14分)已知直線
經(jīng)過(guò)橢圓
的左頂點(diǎn)A和上頂點(diǎn)D,橢圓
的右頂點(diǎn)為
,點(diǎn)
是橢圓
上位于
軸上方的動(dòng)點(diǎn),直線
與直線
分別交于
兩點(diǎn)。![]()
(I)求橢圓
的方程;
(Ⅱ)求線段
的長(zhǎng)度的最小值;
(Ⅲ)當(dāng)線段
的長(zhǎng)度最小時(shí),在橢圓
上是否存在這樣的點(diǎn)
,使得
的面積為
?若存在,確定點(diǎn)
的個(gè)數(shù),若不存在,說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知焦點(diǎn)在
軸上的雙曲線
的兩條漸近線過(guò)坐標(biāo)原點(diǎn),且兩條漸近線與以
點(diǎn)
為圓心,1為半徑的圓相切,又知
的一個(gè)焦點(diǎn)與A關(guān)于直線
對(duì)稱.
(1)求雙曲線
的方程;
(2)設(shè)直線
與雙曲線
的左支交于
,
兩點(diǎn),另一直線
經(jīng)過(guò)
及
的中點(diǎn),求直線
在
軸上的截距
的取值范圍.
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com