分析 (1)去分母,因式分解,得出使不等式成立的充分條件即可;
(2)化簡(jiǎn)式子,利用和角的正切公式得出結(jié)論.
解答 證明:(1)要證:$\frac{a}{\sqrt}+\frac{\sqrt{a}}$≥$\sqrt{a}+\sqrt$.
只需證:a$\sqrt{a}$+b$\sqrt$≥($\sqrt{a}+\sqrt$)$\sqrt{a}$$\sqrt$,
即證:a$\sqrt{a}$+b$\sqrt$≥a$\sqrt$+b$\sqrt{a}$,
只需證:a($\sqrt{a}$-$\sqrt$)+b($\sqrt$-$\sqrt{a}$)≥0,
即證:(a-b)($\sqrt{a}$-$\sqrt$)≥0,
即證:($\sqrt{a}$$-\sqrt$)2($\sqrt{a}+\sqrt$)≥0,
顯然上式恒成立,
故$\frac{a}{\sqrt}+\frac{\sqrt{a}}$≥$\sqrt{a}+\sqrt$.
(2)∵(1+tanA)(1+tanB)=2,
即1+tanA+tanB+tanAtanB=2,
∴tanA+tanB=1-tanAtanB,
∴tan(A+B)=$\frac{tanA+tanB}{1-tanAtanB}$=1,
又A,B都是銳角,A+B≠90°,
∴A+B=45°.
點(diǎn)評(píng) 本題考查了證明方法,屬于中檔題.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{π}{8}$ | B. | $\frac{5π}{24}$ | C. | $\frac{3π}{4}$ | D. | $\frac{15π}{24}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -5 | B. | 1 | C. | $\frac{5}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 6 | B. | $\sqrt{6}$ | C. | 4 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 2個(gè)球都是白球的概率 | B. | 2個(gè)球中恰好有1個(gè)是白球的概率 | ||
| C. | 2個(gè)球都不是白球的概率 | D. | 2個(gè)球不都是紅球的概率 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com