分析 (1)用較大的數(shù)字減去較小的數(shù)字,得到差,然后再用上一式中的減數(shù)和得到的差中較大的減去較小的,以此類推,當(dāng)減數(shù)和差相等時,就得到要求的最大公約數(shù);
(2)用較大的數(shù)字除以較小的數(shù)字,得到商和余數(shù),然后再用上一式中的除數(shù)和得到的余數(shù)中較大的除以較小的,以此類推,當(dāng)整除時,就得到要求的最大公約數(shù);
(3)首先把一個n次多項式f(x)寫成(…((a[n]x+a[n-1])x+a[n-2])x+…+a[1])x+a[0]的形式,然后化簡,求n次多項式f(x)的值就轉(zhuǎn)化為求n個一次多項式的值,求出函數(shù)的值
解答 解:(1)∵168-72=96,
96-72=24,
72-24=48,
48-24=24,
故72和168的最大公約數(shù)是24;
(2)∵280=2×98+84,
98=1×84+14,
84=6×14,
故98和280的最大公約數(shù)是14;
(3)f(x)=x5+x3+x2+x+1=((((x+0)x+1)x+1)x+1)x+1,
當(dāng)x=3時
v0=1,
v1=v0×3+0=3;
v2=v1×3+1=10;
v3=v2×3+1=31;
v4=v3×3+1=94;
v5=v4×3+1=283,
即x=3時的函數(shù)值這283
點評 本題考查用輾轉(zhuǎn)相除法求兩個數(shù)的最大公約數(shù)及秦九韶算法,本題是一個基礎(chǔ)題,在解題時注意數(shù)字的運算不要出錯,注意與更相減損術(shù)進行比較
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 1 | B. | $\frac{{\sqrt{3}}}{2}$ | C. | -1 | D. | $\frac{{\sqrt{3}-1}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $({2,\frac{π}{3}})$ | B. | $({1,\frac{π}{3}})$ | C. | $({2,-\frac{π}{6}})$ | D. | $({2,-\frac{π}{3}})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\overrightarrow{0}$ | B. | 2$\overrightarrow{BC}$ | C. | -2$\overrightarrow{BC}$ | D. | 2$\overrightarrow{AC}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | an=$\frac{3}{2}sin({\frac{2π}{3}n-\frac{π}{6}})$ | B. | an=$\sqrt{3}sin({\frac{2π}{3}n+\frac{2π}{3}})$ | ||
| C. | an=-$\frac{3}{2}sin({\frac{2π}{3}n+\frac{5π}{6}})$ | D. | an=$\sqrt{3}sin({\frac{2π}{3}n-\frac{π}{3}})$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com