欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

精英家教網 > 高中數學 > 題目詳情

已知定義在R上的函數數學公式,其中a≠1.
(Ⅰ)當a=2時,判斷f(x)的單調性并求f(x)的極值點;
(Ⅱ)若y=f(x)的圖象與x軸恰有三個不同的交點,求實數a的取值范圍.

解:(Ⅰ)對f(x)求導得:f′(x)=x2-(3a+1)x+2a(a+1),
代入a=2有f′(x)=(x-3)(x-4);
令f′(x)>0得x∈(-∞,3)∪(4,+∞);又令f′(x)<0,得到:x∈(3,4),
于是:f(x)在(-∞,3),(4,+∞)上單調遞增;f(x)在(3,4)上單調遞減.
當x=3時,f(x)有極大值,當x=4時,f(x)有極小值,所以x=3是極大值點,x=4是極小值點.
(Ⅱ)由(Ⅰ)知:f′(x)=(x-2a)[x-(a+1)],
(1)當a<1時,有:2a<a+1;令f′(x)>0得:x∈(-∞,2a)∪(a+1,+∞);
再令f′(x)<0得:x∈(2a,a+1),故f(x)在(-∞,2a),(a+1,+∞)上單調遞增,
在(2a,a+1)上單調遞減;此時可知:f(2a)為f(x)的極大值,f(a+1)為f(x)的極小值;
欲使y=f(x)的圖象與x軸恰有三個交點,則必有:,
即是:,解得:a∈(-3,-1)∪(-1,0)∪(0,).
(2)當a>1時,有:2a>a+1;令f′(x)>0得:x∈(-∞,a+1)∪(2a,+∞);
再令f′(x)<0得:x∈(a+1,2a),故f(x)在(-∞,a+1),(2a,+∞)上單調遞增,
在(a+1,2a)上單調遞減;此時可知:f(a+1)為f(x)的極大值,f(2a)為f(x)的極小值;
欲使y=f(x)的圖象與x軸恰有三個交點,則必有:,
即是:?a∈∅,
綜上可知:a∈(-3,-1)∪(-1,0)∪(0,).
分析:(Ⅰ)求出f′(x),把a=2代入,解不等式f′(x)>0,及f′(x)<0,由此可判斷函數單調性及極值點;
(Ⅱ)分情況討論函數f(x)的極值,若y=f(x)的圖象與x軸恰有三個不同的交點,則有極大值大于0,極小值小于0,從而可得a的取值范圍;
點評:本題考查利用導數研究函數的單調性、極值問題,本題運用了分類討論思想及數形結合思想.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知定義在R上的函數y=f(x)滿足下列條件:
①對任意的x∈R都有f(x+2)=f(x);
②若0≤x1<x2≤1,都有f(x1)>f(x2);
③y=f(x+1)是偶函數,
則下列不等式中正確的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)滿足:f(x)=
f(x-1)-f(x-2),x>0
log2(1-x),       x≤0
  則:
①f(3)的值為
0
0

②f(2011)的值為
-1
-1

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)滿足f(x+1)=-f(x),且x∈(-1,1]時f(x)=
1,(-1<x≤0)
-1,(0<x≤1)
,則f(3)=( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x)是偶函數,對x∈R都有f(2+x)=f(2-x),當f(-3)=-2時,f(2013)的值為(  )
A、-2B、2C、4D、-4

查看答案和解析>>

科目:高中數學 來源: 題型:

已知定義在R上的函數f(x),對任意x∈R,都有f(x+6)=f(x)+f(3)成立,若函數y=f(x+1)的圖象關于直線x=-1對稱,則f(2013)=( 。
A、0B、2013C、3D、-2013

查看答案和解析>>

同步練習冊答案