| A. | $\frac{16π}{3}+2\sqrt{3}$ | B. | $\frac{16π}{3}+4\sqrt{3}$ | C. | $\frac{24π}{3}+2\sqrt{3}$ | D. | $\frac{24π}{3}+4\sqrt{3}$ |
分析 由曲線的方程可得,曲線關(guān)于兩個(gè)坐標(biāo)軸及原點(diǎn)都是對(duì)稱的,故畫出圖象,結(jié)合圖象求得圍成的曲線的面積.
解答
解:點(diǎn)集{(x,y)|(|x|-1)2+y2=4}表示的圖形是一條封閉的曲線,關(guān)于x,y軸對(duì)稱,如圖所示.
由圖可得面積S=${S}_{菱形}+\frac{4}{3}{S}_{圓}$=$\frac{1}{2}×2\sqrt{3}×2$+$\frac{4}{3}×π×4$=$\frac{16π}{3}$+2$\sqrt{3}$.
故選:A.
點(diǎn)評(píng) 本題考查線段的方程特點(diǎn),由曲線的方程研究曲線的對(duì)稱性,體現(xiàn)了數(shù)形結(jié)合的數(shù)學(xué)思想.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | “合情推理”的下位 | B. | “直接證明”的下位 | ||
| C. | “演繹推理”的下位 | D. | “間接證明”的下位 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | -3 | B. | -2 | C. | -1 | D. | 0 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | x${\;}^{2}+\frac{{y}^{2}}{3}$=1 | B. | $\frac{{x}^{2}}{16}-\frac{{y}^{2}}{48}$=1 | C. | $\frac{{x}^{2}}{2}-\frac{{y}^{2}}{6}$=1 | D. | $\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{12}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{40}{3}$ | B. | $\frac{28}{3}$ | C. | $\frac{16}{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | B. | C. | D. |
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com