【題目】已知定義在實(shí)數(shù)集
上的函數(shù)
滿足
,且
的導(dǎo)函數(shù)
,則不等式
的解集為( )
A.
B.
C.
D. ![]()
【答案】A
【解析】設(shè)t=lnx,
則不等式f(lnx)>3lnx+1等價為f(t)>3t+1,
設(shè)g(x)=f(x)﹣3x﹣1,
則g′(x)=f′(x)﹣3,
∵f(x)的導(dǎo)函數(shù)f′(x)<3,
∴g′(x)=f′(x)﹣3<0,此時函數(shù)單調(diào)遞減,
∵f(1)=4,
∴g(1)=f(1)﹣3﹣1=0,
則當(dāng)x<1時,g(x)>g(1)=0,
即g(x)<0,則此時g(x)=f(x)﹣3x﹣1>0,
即不等式f(x)>3x+1的解為x<1,
即f(t)>3t+1的解為t<1,
由lnx<1,解得0<x<e,
即不等式f(lnx)>3lnx+1的解集為(0,e),
故選:A.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】兩個隨機(jī)變量x,y的取值表為
x | 0 | 1 | 3 | 4 |
y | 2.2 | 4.3 | 4.8 | 6.7 |
若x,y具有線性相關(guān)關(guān)系,且
=
x+2.6,則下列四個結(jié)論錯誤的是( )
A.x與y是正相關(guān)
B.當(dāng)x=6時,y的估計(jì)值為8.3
C.x每增加一個單位,y增加0.95個單位
D.樣本點(diǎn)(3,4.8)的殘差為0.56
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)
,![]()
(1)若
,且對
,函數(shù)
的值域?yàn)?/span>
,求
的表達(dá)式;
(2)在(1)的條件下,函數(shù)
在
上單調(diào)遞減,求實(shí)數(shù)
的取值范圍;
(3)設(shè)
,
,
且
為偶函數(shù),證明![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】記函數(shù)f(x)=
的定義域?yàn)榧螦,函數(shù)g(x)=
在(0,+∞)上為增函數(shù)時k的取值集合為B,函數(shù)h(x)=x2+2x+4的值域?yàn)榧螩.
(1)求集合A,B,C;
(2)求集合A∪(RB),A∩(B∪C).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
的左右焦點(diǎn)分別為
,點(diǎn)
為短軸的一個端點(diǎn),
,若點(diǎn)
在橢圓
上,則點(diǎn)
稱為點(diǎn)
的一個“橢點(diǎn)”.
(1)求橢圓
的標(biāo)準(zhǔn)方程;
(2)若直線
與橢圓
相交于
、
兩點(diǎn),且
兩點(diǎn)的“橢點(diǎn)”分別為
,以
為直徑的圓經(jīng)過坐標(biāo)原點(diǎn)
,試求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
:
的上下兩個焦點(diǎn)分別為
,
,過點(diǎn)
與
軸垂直的直線交橢圓
于
、
兩點(diǎn),
的面積為
,橢圓
的離心力為
.
(Ⅰ)求橢圓
的標(biāo)準(zhǔn)方程;
(Ⅱ)已知
為坐標(biāo)原點(diǎn),直線
:
與
軸交于點(diǎn)
,與橢圓
交于
,
兩個不同的點(diǎn),若存在實(shí)數(shù)
,使得
,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線l:x-y-2=0,拋物線C:y2=2px(p>0).
![]()
(1)若直線l過拋物線C的焦點(diǎn),求拋物線C的方程;
(2)當(dāng)p=1時,若拋物線C上存在關(guān)于直線l對稱的相異兩點(diǎn)P和Q.求線段PQ的中點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓
上的點(diǎn)到它的兩個焦的距離之和為
,以橢圓
的短軸為直徑的圓
經(jīng)過這兩個焦點(diǎn),點(diǎn)
,
分別是橢圓
的左、右頂點(diǎn).
(
)求圓
和橢圓
的方程.
(
)已知
,
分別是橢圓
和圓
上的動點(diǎn)(
,
位于
軸兩側(cè)),且直線
與
軸平行,直線
,
分別與
軸交于點(diǎn)
,
.求證:
為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】橢圓
的離心率是
,過點(diǎn)
的動直線
與橢圓相交于
兩點(diǎn),當(dāng)直線
與
軸平行時,直線
被橢圓
截得的線段長為
.
(Ⅰ)求橢圓
的方程;
(Ⅱ)在
軸上是否存在異于點(diǎn)
的定點(diǎn)
,使得直線
變化時,總有
?若存在,求出點(diǎn)
的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com