【題目】已知函數(shù)
.
(Ⅰ)當(dāng)
時,求曲線
在
處的切線方程;
(Ⅱ)當(dāng)
時,求證:函數(shù)
在
處取得最值.
【答案】(1)
;(2)詳見解析.
【解析】試題分析:
(Ⅰ)利用導(dǎo)數(shù)求得斜率為1,結(jié)合切線所過的點,由點斜式方程可得切線方程為
;
(Ⅱ)利用題意對函數(shù)進(jìn)行求導(dǎo),利用導(dǎo)函數(shù)研究原函數(shù)的單調(diào)性,由函數(shù)的單調(diào)性可知函數(shù)
在
處取得最值.
試題解析:
(Ⅰ)因為
,
,所以
因為
所以切點為
,
則切線方程為
(Ⅱ)證明:定義域![]()
函數(shù)
所以
![]()
當(dāng)
時,
,
均為減函數(shù)
所以
在
上單調(diào)遞減;
又![]()
因為當(dāng)
時
,
在
上單調(diào)遞增;
又因為當(dāng)
在
上單調(diào)遞減;
因為
所以
在
處取得最大值
解法二:
當(dāng)
時,
,
又因為
,
在
上單調(diào)遞增;
當(dāng)
,
又因為
,
在
上單調(diào)遞減;
又因為
所以
在
處取得最大值
解法三:也可以二次求導(dǎo),老師斟酌給分
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,平行六面體ABCD﹣A1B1C1D1中,側(cè)棱B1B長為3,底面是邊長為2的菱形,∠A1AB=120°,∠A1AD=60°,點E在棱B1B上,則AE+C1E的最小值為( )![]()
A.![]()
B.5
C.2![]()
D.7
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知四棱錐的側(cè)棱
底面
,且底面
是直角梯形,
,
,
,點
在側(cè)棱上.
(1)求證:
平面
;
(2)若側(cè)棱
與底面
所成角的正切值為
,點
為側(cè)棱
的中點,求異面直線
與
所成角的余弦值.
![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(I)討論函數(shù)的單調(diào)性,并證明當(dāng)
時,
;
(Ⅱ)證明:當(dāng)
時,函數(shù)
有最小值,設(shè)
最小值為
,求函數(shù)
的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對定義域R內(nèi)的任意x都有f(x)=f(4﹣x),且當(dāng)x≠2時其導(dǎo)函數(shù)f′(x)滿足(x﹣2)f′(x)>0,若2<a<4則( 。
A.f(2a)<f(3)<f(log2a)
B.f(log2a)<f(3)<f(2a)
C.f(3)<f(log2a)<f(2a)
D.f(log2a)<f(2a)<f(3)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓:![]()
, 左右焦點分別為F1 , F2 , 過F1的直線l交橢圓于A,B兩點,若|BF2|+|AF2|的最大值為5,則b的值是
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
是R上的奇函數(shù),且
的圖象關(guān)于
對稱,當(dāng)
時,
,
(Ⅰ)當(dāng)
時,求
的解析式;
(Ⅱ)計算
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知全集U=R,集合A={x|x<﹣4,或x>2},B={x|﹣1≤2x﹣1﹣2≤6}.
(1)求A∩B、(UA)∪(UB);
(2)若集合M={x|2k﹣1≤x≤2k+1}是集合A的子集,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖F1、F2是橢圓C1:
+y2=1與雙曲線C2的公共焦點,A、B分別是C1、C2在第二、四象限的公共點,若四邊形AF1BF2為矩形,則C2的離心率是
( 。![]()
A.![]()
B.![]()
C.![]()
D.![]()
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com