設(shè)拋物線C:
的焦點(diǎn)為F,經(jīng)過(guò)點(diǎn)F的直線與拋物線交于A、B兩點(diǎn).
(1)若
,求線段
中點(diǎn)M的軌跡方程;
(2)若直線AB的方向向量為
,當(dāng)焦點(diǎn)為
時(shí),求
的面積;
(3)若M是拋物線C準(zhǔn)線上的點(diǎn),求證:直線
的斜率成等差數(shù)列.
(1)
;(2)
。
(3)顯然直線
的斜率都存在,分別設(shè)為
.
點(diǎn)
的坐標(biāo)為
.
聯(lián)立方程組得到
,
,得到
.
【解析】
試題分析:
思路分析:(1) 利用“代入法”。
(2) 聯(lián)立方程組
得,
,應(yīng)用弦長(zhǎng)公式求
,得到面積。
(3)直線
的斜率都存在,分別設(shè)為
.
點(diǎn)
的坐標(biāo)為
.
設(shè)直線AB:
,代入拋物線得
,
確定
,
,得到
.
解:(1) 設(shè)
,
,焦點(diǎn)
,則由題意
,即
所求的軌跡方程為
,即
(2)
,
,直線
,
由
得,
,
,
。
(3)顯然直線
的斜率都存在,分別設(shè)為
.
點(diǎn)
的坐標(biāo)為
.
設(shè)直線AB:
,代入拋物線得
,
所以
,
又
,
,
因而
,![]()
因而
而
,故
.
考點(diǎn):等差數(shù)列,求軌跡方程,直線與拋物線的位置關(guān)系。
點(diǎn)評(píng):中檔題,涉及“弦中點(diǎn)”問(wèn)題,往往利用“代入法”求軌跡方程。涉及直線與圓錐曲線的位置關(guān)系問(wèn)題,往往通過(guò)聯(lián)立方程組,應(yīng)用韋達(dá)定理,簡(jiǎn)化解題過(guò)程。
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 3 |
| S△BCF |
| S△ACF |
A、
| ||
B、
| ||
C、
| ||
D、
|
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 3 |
| |BC| |
| |AC| |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
| 3 |
| S△BCF |
| S△ACF |
| 4 |
| 5 |
| 4 |
| 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:044
(2005
江西,22)如下圖,設(shè)拋物線C:(1)
求△APB的重心G的軌跡方程;(2)
證明:∠PFA=∠PFB.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com