θ是第二象限角,則下列選項(xiàng)中一定為正值的是( )
A. ![]()
B. ![]()
C. ![]()
D. ![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科集合的表示、集合的運(yùn)算、集合間的運(yùn)算關(guān)系(解析版) 題型:選擇題
已知集合
,
,則![]()
A. ![]()
B. ![]()
C. ![]()
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科解答題后三題(解析版) 題型:解答題
在某校教師趣味投籃比賽中,比賽規(guī)則是: 每場(chǎng)投6個(gè)球,至少投進(jìn)4個(gè)球且最后2個(gè)球都投進(jìn)者獲獎(jiǎng);否則不獲獎(jiǎng). 已知教師甲投進(jìn)每個(gè)球的概率都是
.
(1)記教師甲在每場(chǎng)的6次投球中投進(jìn)球的個(gè)數(shù)為X,求X的分布列及數(shù)學(xué)期望;
(2)求教師甲在一場(chǎng)比賽中獲獎(jiǎng)的概率;
(3)已知教師乙在某場(chǎng)比賽中,6個(gè)球中恰好投進(jìn)了4個(gè)球,求教師乙在這場(chǎng)比賽中獲獎(jiǎng)的概率;教師乙在這場(chǎng)比賽中獲獎(jiǎng)的概率與教師甲在一場(chǎng)比賽中獲獎(jiǎng)的概率相等嗎?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科解答題前三題(解析版) 題型:解答題
已知等差數(shù)列
的公差大于零,且
是方程
的兩個(gè)根;各項(xiàng)均為正數(shù)的等比數(shù)列
的前
項(xiàng)和為
,且滿足
,![]()
(1)求數(shù)列
、
的通項(xiàng)公式;
(2)若數(shù)列
滿足
,求數(shù)列
的前n項(xiàng)和
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科解三角形(解析版) 題型:選擇題
在△ABC中,內(nèi)角A、B、C的對(duì)邊分別為a、b、c,且
,則△ABC是( )
A. 鈍角三角形
B. 直角三角形
C. 銳角三角形
D. 等邊三角形
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科絕對(duì)值不等式(解析版) 題型:選擇題
設(shè)A={x∈Z||x-2|≤5},則A中最小元素為( )
A. 2
B. -3
C. 7
D. 0
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科線性規(guī)劃(解析版) 題型:選擇題
若不等式組
所表示的平面區(qū)域被直線
分成面積相等的兩
部分,則k的值為( )
A. 4
B. 3
C. 2
D. 1
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科等差等比數(shù)列的定義(解析版) 題型:選擇題
數(shù)列{an}的通項(xiàng)公式是an=
,若前n項(xiàng)和為10,則項(xiàng)數(shù)n為( )
A.120
B.99
C.110
D.121
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014高考名師推薦數(shù)學(xué)文科球面距離(解析版) 題型:選擇題
球面上有3個(gè)點(diǎn),其中任意兩點(diǎn)的球面距離都等于大圓周長(zhǎng)的
,經(jīng)過(guò)3個(gè)點(diǎn)的小圓的周長(zhǎng)為
,那么這個(gè)球的半徑為( )
A.![]()
B.![]()
C.2
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com