已知函數(shù)
,(
為自然對數(shù)的底數(shù)).
(Ⅰ)求函數(shù)
的遞增區(qū)間;
(Ⅱ)當(dāng)
時,過點![]()
作曲線
的兩條切線,設(shè)兩切點為
,![]()
,求證
為定值,并求出該定值。
解:(Ⅰ)函數(shù)
的定義域是
.
……………………………………………….2分
當(dāng)
時,由
,解得
;
當(dāng)
時,由
,解得
;
當(dāng)
時,由
,解得
,或
.-------------4分
所以當(dāng)
時,函數(shù)
的遞增區(qū)間是
;
當(dāng)
時,函數(shù)
的遞增區(qū)間是
;
當(dāng)
時,函數(shù)
的遞增區(qū)間是
,
. …………….6分
(Ⅱ)因為
,
所以以
為切點的切線的斜率為
;
以
為切點的切線的斜率為
.………………………….8分
又因為切線過點
,所以
;
…………………………………………..10分
解得,
,
. 則
.
由已知
,從而有
.
所以
為定值
.………………..12分
科目:高中數(shù)學(xué) 來源: 題型:
(12分)已知函數(shù)
且e為自然對數(shù)的底數(shù))。
(1)求
的導(dǎo)數(shù),并判斷函數(shù)
的奇偶性與單調(diào)性;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆福建省、二中高二上學(xué)期期末聯(lián)考理科數(shù)學(xué)卷(解析版) 題型:解答題
已知函數(shù)
,
,(
為自然對數(shù)的底數(shù)).
(Ⅰ)當(dāng)
時,求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)函數(shù)
在區(qū)間
上恒為正數(shù),求
的最小值;
(Ⅲ)若對任意給定的
,在
上總存在兩個不同的
,使得
成立,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年湖南省懷化市高三第一次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
(
,
為自然對數(shù)的底數(shù)).
(1)求函數(shù)
的最小值;
(2)若
≥0對任意的
恒成立,求實數(shù)
的值;
(3)在(2)的條件下,證明:![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年甘肅高三第五次階段性學(xué)科達(dá)標(biāo)考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)
,(
為自然對數(shù)的底數(shù))。
(1)當(dāng)
時,求函數(shù)
在區(qū)間
上的最大值和最小值;
(2)若對任意給定的
,在
上總存在兩個不同的
,使得
成立,求
的取值范圍。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江西省四校度高二下學(xué)期期末聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分14分)
已知函數(shù)
,(
e為自然對數(shù)的底數(shù))
(Ⅰ)當(dāng)a=1時,求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若函數(shù)f(x)在
上無零點,求a的最小值;
(III)若對任意給定的
,在
上總存在兩個不同的
,使得
成立,求a的取值范圍.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com