欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

已知銳角△ABC中的內(nèi)角A、B、C的對邊分別為a、b、c,定義向量=(2sinB,),,且,
(1)求f(x)=sin2xcosB-cos2xsinB的單調(diào)減區(qū)間;
(2)如果b=4,求△ABC面積的最大值.
【答案】分析:由兩向量的坐標及兩向量垂直,得到兩向量數(shù)量積為0求出B的度數(shù),
(1)f(x)解析式利用兩角和與差的正弦函數(shù)公式化為一個角的正弦函數(shù),將B的度數(shù)代入,根據(jù)正弦函數(shù)的單調(diào)減區(qū)間求出x的范圍即可;
(2)由b及cosB的值,利用余弦定理列出關(guān)系式,利用基本不等式變形后,求出ac的最大值,利用三角形的面積公式表示出三角形ABC的面積,將ac的最大值代入計算即可求出三角形ABC面積的最大值.
解答:解:∵向量=(2sinB,),=(2cos2-1,cos2B),且
=2sinBcosB+cos2B=sin2B+cos2B=2sin(2B+)=0,
∴2B+=kπ,即B=π-,k∈Z,
∵0<B<,∴B=,
(1)f(x)=sin2xcosB-cos2xsinB=sin(2x-B)=sin(2x-),
由2x-∈[2kπ+,2kπ+],k∈Z,得函數(shù)f(x)的單調(diào)減區(qū)間為[kπ+,kπ+],k∈Z;
(2)由余弦定理得:16=a2+c2-2accos=a2+c2-ac≥ac,
∴S△ABC=acsin≤4
則△ABC面積的最大值為4
點評:此題考查了余弦定理,平面向量的數(shù)量積運算,正弦函數(shù)的單調(diào)性,三角形面積公式,以及基本不等式的運用,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角△ABC中的內(nèi)角A、B、C的對邊分別為a,b,c,定義向量
m
=(2sinB,-
3
),
n
=(cos2B,2cos2
B
2
-1)且
m
n

(1)求函數(shù)f(x)=sin2xcosB-cos2xsinB的單調(diào)遞增區(qū)間;
(2)如果b=2,求△ABC的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角△ABC中的三個內(nèi)角分別為A,B,C.
(1)設(shè)
BC
CA
=
CA
AB
,求證:△ABC是等腰三角形;
(2)設(shè)向量
s
=(2sinC,-
3
),
t
=(cos2C,2cos2
C
2
-1),且
s
t
,若sinA=
2
3
,求sin(
π
3
-B)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•許昌三模)已知向量
a
=(
1
2
,
1
2
sinx+
3
2
cosx)
與 
b
=(1,y)
共線,設(shè)函數(shù)y=f(x).
(1)求函數(shù)f(x)的周期及最大值;
(2)已知銳角△ABC中的三個內(nèi)角分別為A、B、C,若有f(A-
π
3
)=
3
,邊BC=
7
sinB=
21
7
,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知銳角△ABC中的三個內(nèi)角分別為A,B,C.
(1)設(shè)
BC
CA
=
CA
AB
,求證△ABC是等腰三角形;
(2)設(shè)向量
s
=(2sinC,-
3
)
t
=(cos2C,2cos2
C
2
-1)
,且
s
t
,若sinA=
12
13
,求sin(
π
3
-B)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•煙臺二模)已知銳角△ABC中的內(nèi)角A、B、C的對邊分別為a、b、c,定義向量
m
=(2sinB,
3
),
n
=(2cos2
B
2
-1,cos2B)
,且
m
n

(1)求f(x)=sin2xcosB-cos2xsinB的單調(diào)減區(qū)間;
(2)如果b=4,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案