欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

設(shè)數(shù)列{an}的前n項和為Sn,已知Sn=2an-2n+1 (n∈N*).
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)bn=log
an
n+1
2
,數(shù)列{bn}的前n項和為Bn,若存在整數(shù)m,使對任意n∈N*且n≥2,都有B3n-Bn
m
20
成立,求m的最大值;
(Ⅲ)令cn=(-1)n+1log
an
n+1
2
,數(shù)列{cn}的前n項和為Tn,求證:當n∈N*且n≥2時,T2n
2
2
分析:(Ⅰ)根據(jù)題中給出的設(shè)數(shù)列{an}的前n項和為Sn便可求出數(shù)列{
an
2n
}是公差為1的等差數(shù)列,將a1=4代入便可求出數(shù)列{an}的通項公式;
(Ⅱ)先求出數(shù)列bn的通項公式,然后求寫前n項和Bn的表達式,進而求出的B3n-Bn表達式,然后證明B3n-Bn為遞增數(shù)列,即當n=2時,B3n-Bn最小,便可求出m的最大值.
(Ⅲ)先將所需證明的不等式化簡為
1
n+1
+
1
n+2
+…+
1
2n
2
2
,然后利用函數(shù)的導函數(shù)證明g(x)=ln(x+1)-
x
x+1
為增函數(shù),即可證明當n∈N*且n≥2時,T2n
2
2
解答:解:(Ⅰ)由Sn=2an-2n+1,得Sn-1=2an-1-2n(n≥2).
兩式相減,得an=2an-2an-1-2n,即an-2an-1=2n(n≥2).
于是
an
2n
-
an-1
2n-1
=1,所以數(shù)列{
an
2n
}是公差為1的等差數(shù)列.(2分)
又S1=a1=2a1-22,,所以a1=4.
所以
an
2n
=2+(n-1)=n+1,故an=(n+1)•2n.(4分)
(注:該問也可用歸納,猜想,數(shù)學歸納法證明的方法)
(Ⅱ)因為bn=log
an
n+1
2
=log2n2=
1
n
,則B3n-Bn=
1
n+1
+
1
n+2
+
1
n+3
+…+
1
3n

令f(n)=
1
n+1
+
1
n+2
+…+
1
3n

則f(n+1)=
1
n+1
+
1
n+2
+…+
1
3n
+
1
3n+1
+
1
3n+2
+
1
3n+3

所以f(n+1)-f(n)=
1
3n+1
+
1
3n+2
+
1
3n+3
-
1
n+1
=
1
3n+1
+
1
3n+2
-
2
3n+3
1
3n+3
+
1
3n+3
-
2
3n+3
=0.
即f(n+1)>f(n),所以數(shù)列{f(n)}為遞增數(shù)列.(7分)
所以當n≥2時,f(n)的最小值為f(2)=
1
3
+
1
4
+
1
5
+
1
6
=
19
20

據(jù)題意,
m
20
19
20
,即m<19.又m為整數(shù),
故m的最大值為18.(8分)
(Ⅲ)證明:因為cn=(-1)n+1
1
n
,則當n≥2時,
T2n=1-
1
2
+
1
3
-
1
4
+…+
1
2n-1
-
1
2n
=(1+
1
2
+
1
3
+
1
4
+…+
1
2n-1
+
1
2n
)-2(
1
2
+
1
4
+…+
1
2n
)=
1
n+1
+
1
n+2
+…+
1
2n
.(9分)
下面證
1
n+1
+
1
n+2
+…+
1
2n
2
2

先證一個不等式,當x>0時,ln(x+1)>
x
x+1

令g(x)=ln(x+1)-
x
x+1
(x>0),則g′(x)=
1
x+1
-
1
(x+1)2
=
x
(x+1)2
>0,
∴g(x)在(0,+∞)時單調(diào)遞增,
則g(x)>g(0)=0,即當x>0時,ln(x+1)>
x
x+1
,
令x=
1
n
,則ln
n+1
n
1
n+1
?ln(n+1)-lnn>
1
n+1

∴l(xiāng)n(n+2)-ln(n+1)>
1
n+2
,
ln(n+3)-ln(n-2)>
1
n+3
,
…,
ln(2n)-ln(2n-1)>
1
2n

以上n個式相加,即有l(wèi)n(2n)-lnn>
1
n+1
+
1
n+2
+…+
1
2n

1
n+1
+
1
n+2
+…+
1
2n
<ln(2n)-lnn<ln2<
2
2

從而原不等式得證.(14分)
點評:本題主要考查等差數(shù)列、等比數(shù)列、放縮法等基礎(chǔ)知識,考查綜合運用知識分析問題和解決問題的能力,解題時注意整體思想和轉(zhuǎn)化思想的運用,屬于中檔題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的前n項的和為Sn,且Sn=3n+1.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)bn=an(2n-1),求數(shù)列{bn}的前n項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列an的前n項的和為Sn,a1=
3
2
,Sn=2an+1-3

(1)求a2,a3;
(2)求數(shù)列an的通項公式;
(3)設(shè)bn=(2log
3
2
an+1)•an
,求數(shù)列bn的前n項的和Tn

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設(shè)數(shù)列{an}的前n項和Sn=2an+
3
2
×(-1)n-
1
2
,n∈N*
(Ⅰ)求an和an-1的關(guān)系式;
(Ⅱ)求數(shù)列{an}的通項公式;
(Ⅲ)證明:
1
S1
+
1
S2
+…+
1
Sn
10
9
,n∈N*

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式組
x≥0
y≥0
nx+y≤4n
所表示的平面區(qū)域為Dn,若Dn內(nèi)的整點(整點即橫坐標和縱坐標均為整數(shù)的點)個數(shù)為an(n∈N*
(1)寫出an+1與an的關(guān)系(只需給出結(jié)果,不需要過程),
(2)求數(shù)列{an}的通項公式;
(3)設(shè)數(shù)列an的前n項和為SnTn=
Sn
5•2n
,若對一切的正整數(shù)n,總有Tn≤m成立,求m的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2013•鄭州一模)設(shè)數(shù)列{an}的前n項和Sn=2n-1,則
S4
a3
的值為(  )

查看答案和解析>>

同步練習冊答案