在三棱錐
中,
、
、
兩兩垂直,且
,
,點(diǎn)
是棱
的中點(diǎn).
(1)求異面直線
與
所成角的余弦值;
(2)求二面角
的余弦值.![]()
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
本小題滿分12分)![]()
已知三棱錐PABC中,PA⊥平面ABC,AB⊥AC,PA=AC=
AB,
N為AB上一點(diǎn),AB=4AN,M,S分別為PB,BC的中點(diǎn).
(I)證明:CM⊥SN;(II)求SN與平面CMN所成角的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(12分)在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,F(xiàn)C⊥平面ABCD,AE⊥BD,CB=CD=CF.![]()
(1)求證:BD⊥平面AED;(4分)
(2)求二面角F-BD-C的余弦值.(8分)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
如圖,在三棱錐S-ABC中,BC⊥平面SAC,AD⊥SC.
(I)求證:AD⊥平面SBC;
(II)試在SB上找一點(diǎn)E,使得BC//平面ADE,并證明你的結(jié)論.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在直三棱柱ABC-A1B1C1中,AC=BC=2,AA1=2
,∠ACB=900,M是AA1的中點(diǎn),N是BC1的中點(diǎn).![]()
(1)求證:MN//平面A1B1C1;
(2)求二面角B-C1M-C的平面角余弦值的大。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)如圖在底面是矩形的四棱錐P-ABCD中,PA⊥底面ABCD, E、F分別是PC、PD的中點(diǎn),求證:(1)EF∥平面PAB;
(2)平面PAD⊥平面PDC.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本題滿分10分)
如圖:
是⊙
的直徑,
垂直于⊙
所在的平面,
是圓周上不同于
的任意一點(diǎn),
(1)求證:平面
.
(2)圖中有幾個(gè)直角三角形.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com