已知函數(shù)f(x)=
為奇函數(shù).
(1)證明:函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù);
(2)解關(guān)于x的不等式f(1+2x2)+f(-x2+2x-4)>0.
(1)∵函數(shù)f(x)=
為定義在R上的奇函數(shù),
∴f(0)=0,即b=0,∴f(x)=
,
∴f′(x)=
.
當x∈(1,+∞)時,f′(x)<0,
∴函數(shù)f(x)在區(qū)間(1,+∞)上是減函數(shù).
(2)由f(1+2x2)+f(-x2+2x-4)>0,得
f(1+2x2)>-f(-x2+2x-4).
∵f(x)是奇函數(shù),∴f(1+2x2)>f(x2-2x+4).
又∵1+2x2>1,x2-2x+4=(x-1)2+3>1,
且f(x)在(1,+∞)上為減函數(shù),
∴1+2x2<x2-2x+4,即x2+2x-3<0,
解得-3<x<1.
∴不等式f(1+2x2)+f(-x2+2x-4)>0的解集為{x|-3<x<1}.
科目:高中數(shù)學 來源: 題型:
(09年泗陽中學模擬六)(14分)
已知函數(shù)f(x)=
為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為![]()
(Ⅰ)求f(
)的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移
個單位后,再將得到的圖象上各點的橫坐標舒暢長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(08年山東卷理)(本小題滿分12分)
已知函數(shù)f(x)=
為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為![]()
(Ⅰ)求f(
)的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移
個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
已知函數(shù)f(x)=
為R上的單調(diào)函數(shù),則實數(shù)a的取值范圍是 ( )
A.[-1,0) B.(0,+∞)
C.[-2,0) D.(-∞,-2)
查看答案和解析>>
科目:高中數(shù)學 來源:2011-2012學年陜西省高三第三次月考理科數(shù)學(普通班)(解析版) 題型:解答題
已知函數(shù)f(x)=
為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為![]()
(1)求f(
)的值;
(2)將函數(shù)y=f(x)的圖象向右平移
個單位后,再將得到的圖象上各點的橫坐標伸長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源:2010年江蘇省高一第三階段檢測數(shù)學卷 題型:解答題
(本小題滿分16分)
已知函數(shù)f(x)=
為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對稱軸間的距離為![]()
(Ⅰ)求f(
)的值;
(Ⅱ)將函數(shù)y=f(x)的圖象向右平移
個單位后,再將得到的圖象上各點的橫坐標延長到原來的4倍,縱坐標不變,得到函數(shù)y=g(x)的圖象,求g(x)的單調(diào)遞減區(qū)間.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com