【題目】如圖,在四棱錐
中,四邊形
是直角梯形,
,
,
底面
,
,
,
是
的中點.
![]()
(1)求證:平面
平面
;
(2)若二面角
的余弦值為
,求直線
與平面
所成角的正弦值.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線
上一點
,F為焦點,
面積為1.
(1)求拋物線C的方程;
(2)過點P引圓
的兩條切線PA、PB,切線PA、PB與拋物線C的另一個交點分別為A、B,求直線AB斜率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,且存在不同的實數(shù)x1,x2,x3,使得f(x1)=f(x2)=f(x3),則x1x2x3的取值范圍是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在國家“大眾創(chuàng)業(yè),萬眾創(chuàng)新”戰(zhàn)略下,某企業(yè)決定加大對某種產(chǎn)品的研發(fā)投入.為了對新研發(fā)的產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格試銷,得到一組檢測數(shù)據(jù)如表所示:
試銷價格 |
|
|
|
|
|
|
產(chǎn)品銷量 |
|
|
|
|
|
|
已知變量
且有線性負相關(guān)關(guān)系,現(xiàn)有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲
;丙
,其中有且僅有一位同學的計算結(jié)果是正確的.
(1)試判斷誰的計算結(jié)果正確?
(2)若由線性回歸方程得到的估計數(shù)據(jù)與檢測數(shù)據(jù)的誤差不超過
,則稱該檢測數(shù)據(jù)是“理想數(shù)據(jù)”,現(xiàn)從檢測數(shù)據(jù)中隨機抽取
個,求“理想數(shù)據(jù)”的個數(shù)
的分布列和數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐
中,四邊形
是直角梯形,
,
,
底面
,
,
,
是
的中點.
![]()
(1)求證:平面
平面
;
(2)若二面角
的余弦值為
,求直線
與平面
所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)
,
、
、
都有
,滿足
的實數(shù)
有且只有3個,給出下述四個結(jié)論:①滿足題目條件的實數(shù)
有且只有2個:②滿足題目條件的實數(shù)
有且只有2個;③
在
上單調(diào)遞增;④
的取值范圍是
.其中所有正確的個數(shù)是( )
A.1個B.2個C.3個D.4個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知F1、F2是橢圓
的左、右焦點,A是橢圓上位于第一象限內(nèi)的一點,點B也在橢圓上,且滿足
(O是坐標原點),
若橢圓的離心率等于![]()
(1)求直線AB的方程;
(2)若三角形ABF2的面積等于
,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系
中,點
點關(guān)于原點
對稱的點為
二次函數(shù)
的圖像經(jīng)過點
和點
回答以下問題:
(1)用
表示
和
的圖像的頂點的縱坐標;
(2)證明:若二次函數(shù)
的圖像上的點
滿足
,則向量
與
的數(shù)量積大于
.
(3)當變
化時,求
中二次函數(shù)頂點縱坐標
的最大值,并求出此時
的值.
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com