欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

13.已知雙曲線E$:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,其一漸近線被圓C:(x-1)2+(y-3)2=9所截得的弦長等于4,則E的離心率為( 。
A.$\frac{{\sqrt{5}}}{2}$B.$\sqrt{5}$C.$\frac{{\sqrt{5}}}{2}$或$\sqrt{3}$D.$\frac{{\sqrt{5}}}{2}$或$\sqrt{5}$

分析 求得圓的圓心和半徑,雙曲線的一條漸近線方程,運用直線和圓相交的弦長公式,可得圓心到漸近線的距離為1,再由點到直線的距離公式和離心率公式,計算即可得到所求值.

解答 解:由圓C:(x-1)2+(y-3)2=9可得圓心(1,3),半徑為3,
雙曲線E$:\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$,的一條漸近線方程為bx-ay=0,
漸近線被圓C:(x-1)2+(y-3)2=9所截得的弦長等于4,圓心到直線的距離為:$\frac{|b±3a|}{\sqrt{{a}^{2}+^{2}}}$
由弦長公式可得2=$\sqrt{9-(\frac{|b±3a|}{\sqrt{{a}^{2}+^{2}}})^{2}}$,可得$\frac{(b±3a)^{2}}{{a}^{2}+^{2}}=5$,解得$\frac{a}=2或\frac{a}=\frac{1}{2}$,
即c=$\sqrt{5}$a或c=$\frac{\sqrt{5}}{2}$a,
即e=$\frac{c}{a}$=$\sqrt{5}$或e=$\frac{\sqrt{5}}{2}$,
故選:D.

點評 本題考查雙曲線的離心率的求法,注意運用直線和圓相交的弦長公式,以及點到值的距離公式,考查運算能力,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

3.在等差數(shù)列中,a1=25,d=-4,前n項的和為Sn,則Sn最大值為364.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.點A(3,1)和點A關(guān)于點$(-\frac{1}{2},\frac{7}{2})$的對稱點B都在直線3x-2y+a=0的同側(cè),則a的取值范圍是(-∞,-7)∪(24,+∞).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.若雙曲線${x^2}-\frac{y^2}{b^2}=1$的一個焦點到一條漸近線的距離為$2\sqrt{2}$,則該雙曲線的焦距為(  )
A.3B.6C.$2\sqrt{2}$D.$4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.等差數(shù)列{an}的前n項和為Sn,數(shù)列{bn}是等比數(shù)列,滿足a1=3,b1=1,b2+S2=10,a5-2b2=a3
(Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)令cn=$\frac{1}{2{S}_{n}}$+bn,設數(shù)列{cn}的前n項和Tn,求T2n

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.已知復數(shù)$z=\frac{5}{2i-1}$(i為虛數(shù)單位),則z的共軛復數(shù)對應的點位于復平面的( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知函數(shù)f(x)滿足f(x)=1-f(2)log2x,則$f({\frac{1}{2}})$=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.在△ABC中,設D是AB邊上的一點,且$\overrightarrow{AD}$=2$\overrightarrow{DB}$,則( 。
A.$\overrightarrow{CD}$=$\frac{1}{3}$$\overrightarrow{CA}$-$\frac{2}{3}$$\overrightarrow{CB}$B.$\overrightarrow{CD}$=$\frac{2}{3}$$\overrightarrow{CA}$-$\frac{1}{3}$$\overrightarrow{CB}$C.$\overrightarrow{CD}$=$\frac{1}{3}$$\overrightarrow{CA}$+$\frac{2}{3}$$\overrightarrow{CB}$D.$\overrightarrow{CD}$=$\frac{2}{3}$$\overrightarrow{CA}$+$\frac{1}{3}$$\overrightarrow{CB}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.如圖所示,在正方體ABCD-A1B1C1D1中,下列結(jié)論正確的是( 。
A.直線A1B與直線AC所成的角是45°
B.直線A1B與平面ABCD所成的角是30°
C.二面角A1-BC-A的大小是60°
D.直線A1B與平面A1B1CD所成的角是30°

查看答案和解析>>

同步練習冊答案