欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

19.已知F是拋物線x2=2py的焦點(diǎn),A、B是該拋物線上的兩點(diǎn),且滿足|AF|+|BF|=3p,則線段AB的中點(diǎn)到x軸的距離為p.

分析 根據(jù)拋物線的方程求出準(zhǔn)線方程,利用拋物線的定義拋物線上的點(diǎn)到焦點(diǎn)的距離等于到準(zhǔn)線的距離,列出方程求出A,B的中點(diǎn)縱坐標(biāo),求出線段AB的中點(diǎn)到x軸的距離.

解答 解:拋物線x2=2py的焦點(diǎn)F(0,$\frac{p}{2}$)準(zhǔn)線方程y=-$\frac{p}{2}$,
設(shè)A(x1,y1),B(x2,y2
∴|AF|+|BF|=y1+$\frac{p}{2}$+y2+$\frac{p}{2}$=3p
解得y1+y2=2p,
∴線段AB的中點(diǎn)縱坐標(biāo)為p
∴線段AB的中點(diǎn)到x軸的距離為p.
故答案為:p.

點(diǎn)評(píng) 本題考查解決拋物線上的點(diǎn)到焦點(diǎn)的距離問(wèn)題,利用拋物線的定義將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知f(x)=$\frac{2x-m}{{{x^2}+1}}$定義在實(shí)數(shù)集R上的函數(shù),把方程f(x)=$\frac{1}{x}$稱為函數(shù)f(x)的特征方程,特征方程的兩個(gè)實(shí)根α,β(α<β)稱為f(x)的特征根.
(1)討論函數(shù)的奇偶性,并說(shuō)明理由;
(2)求αf(β)+βf(α)的值;
(3)判斷函數(shù)y=f(x),x∈[α,β]的單調(diào)性,并證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)集合A={-1,0,1},B={x|x2-x<2},則集合A∩B=( 。
A.{-1,0,1}B.{0,1}C.{-1,0}D.{-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知兩條不重合的直線m、n,兩個(gè)不重合的平面α、β,有下列四個(gè)命題:
①若m∥n,m?α,則n∥α;
②若n⊥α,m⊥β且m∥n則α∥β;
③若m?α,n?α,m∥β,n∥β,則α∥β;
④若α⊥β,α∩β=m,且n?β,n⊥m,則n⊥α.
其中正確命題為( 。
A.①②B.②④C.③④D.②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.已知全集U=R,集合A={x|x2-2x-3<0},B={x|0<x<3},則( 。
A.A∪B=BB.A∩∁UB=∅C.B⊆AD.A⊆B

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.將直角邊長(zhǎng)為1的等腰直角△ABC沿x軸正方向滾動(dòng),某時(shí)刻A與坐標(biāo)原點(diǎn)重合(如圖),設(shè)頂點(diǎn)A(x,y)的軌跡方程是y=f(x),關(guān)于函數(shù)y=f(x)有下列說(shuō)法:
①f(x)的值域?yàn)閇0,$\sqrt{2}$];
②f(x)是周期函數(shù)且周期為1+$\sqrt{2}$;
③f(x)的一個(gè)減區(qū)間是[$\sqrt{2}$,$\sqrt{2}$+2];
④${∫}_{0}^{\sqrt{2}+1}$f(x)dx=$\frac{3π}{4}$+$\frac{1}{2}$;
⑤f(1)<f($\sqrt{2}$+1)<f(100+51$\sqrt{2}$).
其中正確命題的序號(hào)為①③④.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知命題甲:sina-cosa=$\sqrt{2}$,命題乙:雙曲線$\frac{{x}^{2}}{co{s}^{2}a}$-$\frac{{y}^{2}}{si{n}^{2}a}$=1的漸近線與圓(x-1)2+y2=$\frac{1}{2}$相切,則命題甲為命題乙的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.?dāng)?shù)列{an}的前n項(xiàng)和為Sn,Sn=2n-n,等差數(shù)列{bn}的各項(xiàng)為正實(shí)數(shù),其前n項(xiàng)和為Tn,且T3=15,又a1+b1,a2+b2,a3+b3-1成等比數(shù)列.
(I)求數(shù)列{an},{bn}的通項(xiàng)公式;
(Ⅱ)若cn=an•bn,當(dāng)n≥2時(shí)求數(shù)列{cn}的前n項(xiàng)和An

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)l,m是兩條不同的直線,a是一個(gè)平面,則下列說(shuō)法正確的是( 。
A.若l⊥m,m?,則l⊥aB.若l⊥a,l∥m,則m⊥aC.若l∥a,m?a,則l∥mD.若l∥a,m∥a,則l∥m

查看答案和解析>>

同步練習(xí)冊(cè)答案