【題目】改編自中國神話故事的動畫電影《哪吒之魔童降世》自7月26日首映,在不到一個月的時間,票房收入就超過了38億元,創(chuàng)造了中國動畫電影的神話.小明和同學(xué)相約去電影院觀看《哪吒之魔童降世》,影院的三個放映廳分別在7:30,8:00,8:30開始放映,小明和同學(xué)大約在7:40至8:30之間到達(dá)影院,且他們到達(dá)影院的時間是隨機(jī)的,那么他們到達(dá)后等待的時間不超過10分鐘的概率是( )
A.
B.
C.
D.![]()
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某企業(yè)生產(chǎn)的某種產(chǎn)品中抽取100件,測量這些產(chǎn)品的一項(xiàng)質(zhì)量指標(biāo)值.經(jīng)數(shù)據(jù)處理后得到該樣本的頻率分布直方圖,其中質(zhì)量指標(biāo)值不大于1.50的莖葉圖如圖所示,以這100件產(chǎn)品的質(zhì)量指標(biāo)值在各區(qū)間內(nèi)的頻率代替相應(yīng)區(qū)間的概率.
![]()
(1)求圖中
,
,
的值;
(2)估計這種產(chǎn)品質(zhì)量指標(biāo)值的平均數(shù)及方差(說明:①同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表;②方差的計算只需列式正確);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該企業(yè)生產(chǎn)的這種產(chǎn)品符合“質(zhì)量指標(biāo)值不低于1.50的產(chǎn)品至少要占全部產(chǎn)品的
”的規(guī)定?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)圓
,圓
的半徑分別為1,2,且兩圓外切于點(diǎn)
,點(diǎn)
,
分別是圓
,圓
上的兩動點(diǎn),則
的取值范圍是( )
![]()
A.
B.![]()
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】α,β是兩個不重合的平面,在下列條件中,可判斷平面α,β平行的是( )
A. m,n是平面
內(nèi)兩條直線,且
,![]()
B.
內(nèi)不共線的三點(diǎn)到
的距離相等
C.
,
都垂直于平面![]()
D. m,n是兩條異面直線,
,
,且
,![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
在點(diǎn)
處的切線斜率為0.函數(shù)![]()
(1)試用含
的代數(shù)式表示
;
(2)求
的單調(diào)區(qū)間;
(3)令
,設(shè)函數(shù)
在![]()
處取得極值,記點(diǎn)
,
,證明:線段
與曲線
存在異于
,
的公共點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】改編自中國神話故事的動畫電影《哪吒之魔童降世》自7月26日首映,在不到一個月的時間,票房收入就超過了38億元,創(chuàng)造了中國動畫電影的神話.小明和同學(xué)相約去電影院觀看《哪吒之魔童降世》,影院的三個放映廳分別在7:30,8:00,8:30開始放映,小明和同學(xué)大約在7:40至8:30之間到達(dá)影院,且他們到達(dá)影院的時間是隨機(jī)的,那么他們到達(dá)后等待的時間不超過10分鐘的概率是( )
A.
B.
C.
D.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
.
(1)若函數(shù)
在點(diǎn)
處的切線方程為
,求函數(shù)
的極值;
(2)若
,對于任意
,當(dāng)
時,不等式
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
,其中
,
為自然對數(shù)的底數(shù).
(1)若
,求函數(shù)
在
處的切線方程;
(2)若函數(shù)
在定義域上恰有兩個不同的零點(diǎn),求實(shí)數(shù)a的取值范圍;
(3)設(shè)函數(shù)
在區(qū)間
)上存在極值,求證:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于由正整數(shù)構(gòu)成的數(shù)列
,若對任意
,
“且
,
也是
中的項(xiàng),則稱
為
數(shù)列”.設(shè)數(shù)列
|滿足
,
..
(1)請給出一個
的通項(xiàng)公式,使得
既是等差數(shù)列也是“
數(shù)列”,并說明理由;
(2)根據(jù)你給出的通項(xiàng)公式,設(shè)
的前
項(xiàng)和為
,求滿足
的正整數(shù)
的最小值.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com