分析 先將條件化為:$\frac{x^2}{2}+\frac{y^2}{3}=1$,再運用三角換元和輔助角公式求x+y,x2+y2的最值.
解答 解:方程3x2+2y2=6可寫成:$\frac{x^2}{2}+\frac{y^2}{3}=1$,
故設(shè)x=$\sqrt{2}$cosθ,y=$\sqrt{3}$sinθ,
所以,x+y=$\sqrt{2}$cosθ+$\sqrt{3}$sinθ
=$\sqrt{5}$sin(θ+φ)∈[-$\sqrt{5}$,$\sqrt{5}$],
因此,x+y的最大值為:$\sqrt{5}$,
又x2+y2=2cos2θ+3sin2θ=2+sin2θ∈[2,3],
所以,x2+y2的最小值為2,
故答案為:$\sqrt{5}$;2.
點評 本題主要考查了三角換元在求最值中的應(yīng)用,涉及同角三角函數(shù)的基本關(guān)系式和輔助角公式,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | 72 | B. | 71 | C. | 73 | D. | 74 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{5}$-1 | B. | 2$+\sqrt{5}$ | C. | 3$+\sqrt{5}$ | D. | 5$+\sqrt{5}$ |
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com