| A. | 2 | B. | 3 | C. | 4-2ln2 | D. | 2-2ln2 |
分析 設(shè)函數(shù)y=f(x)-g(x),利用導(dǎo)數(shù)y′判定函數(shù)的單調(diào)性與最小值,即可求出|AB|的最小值.
解答 解:設(shè)函數(shù)y=f(x)-g(x)=ex-2x,
則y′=ex-2,
由y′>0,得x>ln2,由y′<0,得x<ln2,
∴當(dāng)x=ln2時,y=ex-2x取得最小值,為2-2ln2;
∴|AB|的最小值為2-2ln2.
故選:D.
點(diǎn)評 本題考查了兩點(diǎn)間距離最小值的求法問題,解題時要注意導(dǎo)數(shù)性質(zhì)的合理運(yùn)用,是基礎(chǔ)題目.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\frac{5}{4}$[1-($\frac{1}{5}$)n] | B. | $\frac{1}{4}$[1-($\frac{1}{5}$)n] | C. | $\frac{1}{4}$[1-($\frac{1}{5}$)n-1] | D. | $\frac{5}{4}$[1-($\frac{1}{5}$)n-1] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
| A. | $\sqrt{2}$ | B. | 1 | C. | $\sqrt{3}$ | D. | $\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com