分析 過(guò)B作BE⊥α于B,且BE=24,連接CE、DE,推導(dǎo)出△BDE是等邊三角形,平面BDE⊥α,由此能求出線段BD與平面α所成的角.
解答
解:過(guò)B作BE⊥α于B,且BE=24(目的是把AC平移到BE),
連接CE、DE,
∵BD⊥AB、BE⊥AB,∴CE⊥平面BDE,∴∠CED=90°
在Rt△CDE中,CE=7,CD=25,∴ED=24,
△BDE中三邊均為24,∴△BDE是等邊三角形,∴∠EBD=60°,
∵BE⊥α,∴平面BDE⊥α,
∴線段BD與平面α所成的角為30°.
故答案為:30°.
點(diǎn)評(píng) 本題考查線面角的大小的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | 給定命題p、q,若p∧q是真命題,則¬p是假命題 | |
| B. | 兩個(gè)三角形全等是這兩個(gè)三角形面積相等的必要條件 | |
| C. | 命題“?x∈R,x2+x+2013>0”的否定是“?x∈R,x2+x+2013<0” | |
| D. | 函數(shù)f(x)=$\frac{1}{x}$在其定義域上是減函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | {-1,1} | B. | {-1} | C. | {0} | D. | {-1,0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
| A. | $\frac{3}{4}$ | B. | $\frac{2}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{1}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com