【題目】已知
是周期為4的偶函數(shù),當(dāng)
時,
,則不等式
在區(qū)間
上的解集為( )
A. (1,3) B. (-1,1) C. (-1,0)∪(1,3) D. (-1,0)∪(0,1)
【答案】C
【解析】若x∈[﹣2,0],則﹣x∈[0,2],此時f(﹣x)=﹣x﹣1,
∵f(x)是偶函數(shù),∴f(﹣x)=﹣x﹣1=f(x),即f(x)=﹣x﹣1,x∈[﹣2,0],
若x∈[2,4],則x﹣4∈[﹣2,0],
∵函數(shù)的周期是4,∴f(x)=f(x﹣4)=﹣(x﹣4)﹣1=3﹣x,
即
,作出函數(shù)f(x)在[﹣1,3]上圖象如圖,
![]()
若0<x≤3,則不等式xf(x)>0等價為f(x)>0,此時1<x<3,
若﹣1≤x≤0,則不等式xf(x)>0等價為f(x)<0,此時﹣1<x<0,
綜上不等式xf(x)>0在[﹣1,3]上的解集為(-1,0)∪(1,3),
故選:C
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量
,
(
),若
,且
的圖象上兩相鄰對稱軸間的距離為
.
(Ⅰ)求
的單調(diào)遞減區(qū)間;
(Ⅱ)設(shè)
的內(nèi)角
,
,
的對邊分別為
,
,
,且滿足
,
,
,求
,
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在正四棱錐
中,已知異面直線
與
所成的角為
,給出下面三個命題:
:若
,則此四棱錐的側(cè)面積為
;
:若
分別為
的中點,則
平面
;
:若
都在球
的表面上,則球
的表面積是四邊形
面積的
倍.
在下列命題中,為真命題的是( )
A.
B.
C.
D. ![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在平面直角坐標(biāo)系xOy中,以O為極點,x軸的正半軸為極軸建立極坐標(biāo)系.若直線l的極坐標(biāo)方程為
,曲線C的極坐標(biāo)方程為:
,將曲線C上所有點的橫坐標(biāo)縮短為原來的一半,縱坐標(biāo)不變,然后再向右平移一個單位得到曲線C1.
(1)求曲線C1的直角坐標(biāo)方程;
(2)已知直線l與曲線C1交于A,B兩點,點P(2,0),求|PA|+|PB|的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)
在
上不具有單調(diào)性.
(1)求實數(shù)
的取值范圍;
(2)若
是
的導(dǎo)函數(shù),設(shè)
,試證明:對任意兩個不相等正數(shù)
,不等式
恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某縣政府為了引導(dǎo)居民合理用水,決定全面實施階梯水價,階梯水價原則上以住宅(一套住宅為一戶)的月用水量為基準(zhǔn)定價:若用水量不超過12噸時,按4元/噸計算水費;若用水量超過12噸且不超過14噸時,超過12噸部分按6.60元/噸計算水費;若用水量超過14噸時,超過14噸部分按7.80元/噸計算水費.為了了解全市居民月用水量的分布情況,通過抽樣,獲得了100戶居民的月用水量(單位:噸),將數(shù)據(jù)按照
,
,…,
分成8組,制成了如圖1所示的頻率分布直方圖.
![]()
(圖1) (圖2)
(Ⅰ)通過頻率分布直方圖,估計該市居民每月的用水量的平均數(shù)和中位數(shù)(精確到0.01);
(Ⅱ)求用戶用水費用
(元)關(guān)于月用水量
(噸)的函數(shù)關(guān)系式;
(Ⅲ)如圖2是該縣居民李某2017年1~6月份的月用水費
(元)與月份
的散點圖,其擬合的線性回歸方程是
.若李某2017年1~7月份水費總支出為294.6元,試估計李某7月份的用水噸數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【2018江西蓮塘一中、臨川二中高三上學(xué)期第一次聯(lián)考】二次函數(shù)
的圖象過原點,對
,恒有
成立,設(shè)數(shù)列
滿足
.
(I)求證:對
,恒有
成立;
(II)求函數(shù)
的表達式;
(III)設(shè)數(shù)列
前
項和為
,求
的值.
【答案】(I)證明見解析;(II)
;(III)2018.
【解析】試題分析:
(1)左右兩側(cè)做差,結(jié)合代數(shù)式的性質(zhì)可證得
,即對
,恒有:
成立;
(2)由已知條件可設(shè)
,給定特殊值,令
,從而可得:
,則
,
,從而有
恒成立,據(jù)此可知
,則
.
(3)結(jié)合(1)(2)的結(jié)論整理計算可得:
,據(jù)此分組求和有:
.
試題解析:
(1)
(僅當(dāng)
時,取“=”)
所以恒有:
成立;
(2)由已知條件可設(shè)
,則
中,令
,
從而可得:
,所以
,即
,
又因為
恒成立,即
恒成立,
當(dāng)
時,
,不合題意舍去,
當(dāng)
時,即
,所以
,所以
.
(3)
,
所以
,
即
.
【題型】解答題
【結(jié)束】
22
【題目】已知函數(shù)
為定義在
上的奇函數(shù).
(1)求函數(shù)
的值域;
(2)當(dāng)
時,不等式
恒成立,求實數(shù)
的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列
中,
,且
對任意正整數(shù)
都成立,數(shù)列
的前
項和為
.
(1)若
,且
,求
;
(2)是否存在實數(shù)
,使數(shù)列
是公比為1的等比數(shù)列,且任意相鄰三項
按某順序排列后成等差數(shù)列,若存在,求出所有
的值;若不存在,請說明理由;
(3)若
,求
.(用
表示).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2016年1月2日凌晨某公司公布的元旦全天交易數(shù)據(jù)顯示,天貓元旦當(dāng)天全天的成交金額為315.5億元.為了了解網(wǎng)購者一次性購物情況,某統(tǒng)計部門隨機抽查了1月1日100名網(wǎng)購者的網(wǎng)購情況,得到如下數(shù)據(jù)統(tǒng)計表,已知網(wǎng)購金額在2000元以上(不含2000元)的頻率為0.4.
![]()
(I)先求出
的值,再將如圖4所示的頻率分布直方圖繪制完整;
(II)對這100名網(wǎng)購者進一步調(diào)查顯示:購物金額在2000元以上的購物者中網(wǎng)齡3年以上的有35人,
購物金額在2000元以下(含2000元)的購物者中網(wǎng)齡不足3年的有20人,請?zhí)顚懴旅娴牧新?lián)表,并據(jù)
此判斷能否在犯錯誤的概率不超過0.025的前提下認(rèn)為網(wǎng)購金額超過2000元與網(wǎng)齡在3年以上有關(guān)?
![]()
參考數(shù)據(jù):
![]()
參考公式:
,其中
.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com