【題目】已知函數(shù)
,求:
(1)函數(shù)
的圖象在點(diǎn)(0,-2)處的切線(xiàn)方程;
(2)
的單調(diào)遞減區(qū)間.
【答案】(1)9x﹣y﹣2=0.(2)f(x)的單調(diào)遞減區(qū)間為(﹣∞,﹣1),(3,+∞).
【解析】
(1)求出f′(x)=﹣3x2+6x+9,f′(0)=9,f(0)=﹣2,由此利用導(dǎo)數(shù)的幾何意義能求出函數(shù)y=f(x)的圖象在點(diǎn)(0,f(0))處的切線(xiàn)方程.
(2)由f′(x)=﹣3x2+6x+9<0,能求出f(x)的單調(diào)遞減區(qū)間.
(1)∵f(x)=﹣x3+3x2+9x﹣2,
∴f′(x)=﹣3x2+6x+9,
f′(0)=9,f(0)=﹣2,
∴函數(shù)y=f(x)的圖象在點(diǎn)(0,f(0))處的切線(xiàn)方程為:
y+2=9x,即9x﹣y﹣2=0.
(2)∵f(x)=﹣x3+3x2+9x﹣2,
∴f′(x)=﹣3x2+6x+9,
由f′(x)=﹣3x2+6x+9<0,
解得x<﹣1或x>3.
∴f(x)的單調(diào)遞減區(qū)間為(﹣∞,﹣1),(3,+∞).
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)
,圓
.
(1)若直線(xiàn)
過(guò)點(diǎn)
且到圓心
的距離為
,求直線(xiàn)
的方程;
(2)設(shè)過(guò)點(diǎn)
的直線(xiàn)
與圓
交于
、
兩點(diǎn)(
的斜率為負(fù)),當(dāng)
時(shí),求以線(xiàn)段
為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著網(wǎng)購(gòu)人數(shù)的日益增多,網(wǎng)上的支付方式也呈現(xiàn)一種多樣化的狀態(tài),越來(lái)越多的便捷移動(dòng)支付方式受到了人們的青睞,更被網(wǎng)友們?cè)u(píng)為“新四大發(fā)明”之一.隨著人們消費(fèi)觀念的進(jìn)步,許多人喜歡用信用卡購(gòu)物,考慮到這一點(diǎn),一種“網(wǎng)上的信用卡”橫空出世——螞蟻花唄.這是一款支付寶和螞蟻金融合作開(kāi)發(fā)的新支付方式,簡(jiǎn)單便捷,同時(shí)也滿(mǎn)足了部分網(wǎng)上消費(fèi)群體在支付寶余額不足時(shí)的“賒購(gòu)”消費(fèi)需求.為了調(diào)查使用螞蟻花唄“賒購(gòu)”消費(fèi)與消費(fèi)者年齡段的關(guān)系,某網(wǎng)站對(duì)其注冊(cè)用戶(hù)開(kāi)展抽樣調(diào)查,在每個(gè)年齡段的注冊(cè)用戶(hù)中各隨機(jī)抽取100人,得到各年齡段使用螞蟻花唄“賒購(gòu)”的人數(shù)百分比如圖所示.
![]()
(1)由大數(shù)據(jù)可知,在18到44歲之間使用花唄“賒購(gòu)”的人數(shù)百分比y與年齡x成線(xiàn)性相關(guān)關(guān)系,利用統(tǒng)計(jì)圖表中的數(shù)據(jù),以各年齡段的區(qū)間中點(diǎn)代表該年齡段的年齡,求所調(diào)查群體各年齡段“賒購(gòu)”人數(shù)百分比y與年齡x的線(xiàn)性回歸方程(回歸直線(xiàn)方程的斜率和截距保留兩位有效數(shù)字);
(2)該網(wǎng)站年齡為20歲的注冊(cè)用戶(hù)共有2000人,試估算該網(wǎng)站20歲的注冊(cè)用戶(hù)中使用花唄“賒購(gòu)”的人數(shù);
(3)已知該網(wǎng)店中年齡段在18-26歲和27-35歲的注冊(cè)用戶(hù)人數(shù)相同,現(xiàn)從18到35歲之間使用花唄“賒購(gòu)”的人群中按分層抽樣的方法隨機(jī)抽取8人,再?gòu)倪@8人中簡(jiǎn)單隨機(jī)抽取2人調(diào)查他們每個(gè)月使用花唄消費(fèi)的額度,求抽取的兩人年齡都在18到26歲的概率.
參考答案:
,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列命題:
①對(duì)立事件一定是互斥事件;②若A,B為兩個(gè)隨機(jī)事件,則P(A∪B)=P(A)+P(B);③若事件A,B,C彼此互斥,則P(A)+P(B)+P(C)=1;④若事件A,B滿(mǎn)足P(A)+P(B)=1,則A與B是對(duì)立事件.
其中正確命題的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)若點(diǎn)
在函數(shù)
的圖象上運(yùn)動(dòng),直線(xiàn)
與函數(shù)
的圖象不相交,求點(diǎn)
到直線(xiàn)
距離的最小值;
(Ⅱ)若當(dāng)
時(shí),
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在班級(jí)活動(dòng)中,4名男生和3名女生站成一排表演節(jié)目:(寫(xiě)出必要的數(shù)學(xué)式,結(jié)果用數(shù)字作答)
(1)女生甲不能站在左端,女生乙不能站在右端,有多少種不同的排法?
(2)甲乙丙三人按高低從左到右有多少種不同的排法?(甲乙丙三位同學(xué)身高互不相等)
(3)現(xiàn)在有7個(gè)座位連成一排,僅安排4個(gè)男生就坐,怡好有兩個(gè)空座位相鄰的不同坐法共有多少種?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)
.
(Ⅰ)求函數(shù)
的單調(diào)區(qū)間;
(Ⅱ)若
恒成立,求實(shí)數(shù)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)函數(shù)
,其中
為自然對(duì)數(shù)的底數(shù).
(1)若
在定義域上是增函數(shù),求
的取值范圍;
(2)若直線(xiàn)
是函數(shù)
的切線(xiàn),求實(shí)數(shù)
的值;
(3)當(dāng)
時(shí),證明:
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】紋樣是中國(guó)傳統(tǒng)文化的重要組成部分,它既代表著中華民族的悠久歷史、社會(huì)的發(fā)展進(jìn)步,也是世界文化藝術(shù)寶庫(kù)中的巨大財(cái)富.小楠從小就對(duì)紋樣藝術(shù)有濃厚的興趣.收集了如下9枚紋樣微章,其中4枚鳳紋徽章,5枚龍紋微章.小楠從9枚徽章中任取3枚,則其中至少有一枚鳳紋徽章的概率為( ).
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
國(guó)際學(xué)校優(yōu)選 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com