欧美日韩黄网欧美日韩日B片|二区无码视频网站|欧美AAAA小视频|久久99爱视频播放|日本久久成人免费视频|性交黄色毛片特黄色性交毛片|91久久伊人日韩插穴|国产三级A片电影网站|亚州无码成人激情视频|国产又黄又粗又猛又爽的

14.已知函數(shù)f(x)=Asin(ωx+φ) (A>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$ )的圖象與x軸的一個交點(diǎn)為(-$\frac{π}{6}$,0),與此交點(diǎn)距離最短的最高點(diǎn)坐標(biāo)是($\frac{π}{12}$,1).
(1)求函數(shù)f(x)的表達(dá)式.
(2)求方程f(x)=a (-1<a<0)在[0,2π]內(nèi)的所有實(shí)數(shù)根之和.

分析 (1)由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由特殊點(diǎn)的坐標(biāo)求出φ的值,可得函數(shù)的解析式.
(2)利用余弦函數(shù)的圖象的對稱性,求得f(x)在[0,2π]內(nèi)的所有實(shí)數(shù)根之和.

解答 解:(1)依題意A=1,$\frac{1}{4}•\frac{2π}{ω}$=$\frac{π}{12}$+$\frac{π}{6}$,∴ω=2.
又∵f(-$\frac{π}{6}$)=0,∴sin(-$\frac{π}{3}$+φ)=0,結(jié)合-$\frac{π}{2}$<φ<$\frac{π}{2}$,∴φ=$\frac{π}{3}$,函數(shù)f(x)=sin(2x+$\frac{π}{3}$).
(2)∵函數(shù)f(x)=sin(2x+$\frac{π}{3}$)的最小正周期是 π,∴函數(shù)f(x)=sin(2x+$\frac{π}{3}$)在[0,2π]內(nèi)恰有2個周期,
∴f(x)=a (-1<a<0)在[0,2π]內(nèi)4個實(shí)根,可設(shè)為x1,x2,x3,x4,(x1<x2<x3<x4
根據(jù)$\frac{{2x}_{1}+\frac{π}{3}+{2x}_{2}+\frac{π}{3}}{2}$=$\frac{3π}{2}$,$\frac{{2x}_{3}+\frac{π}{3}+{2x}_{4}+\frac{π}{3}}{2}$=2$π+\frac{3π}{2}$,求得 $\frac{{x}_{1}{+x}_{2}}{2}$=$\frac{7π}{12}$,$\frac{{x}_{3}{+x}_{4}}{2}$=$\frac{19π}{12}$,
∴在[0,2π]內(nèi)的所有實(shí)數(shù)根之和 2×$\frac{7π}{12}$=2×$\frac{9π}{12}$=$\frac{13π}{3}$.

點(diǎn)評 本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出ω,由特殊點(diǎn)的坐標(biāo)求出φ的值,余弦函數(shù)的圖象的對稱性,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在(1+x+$\frac{1}{{x}^{2015}}$)10的展開式中,含x2項的系數(shù)為( 。
A.10B.30C.45D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.(1)求證:$\sqrt{5}$+$\sqrt{7}$>1+$\sqrt{13}$;
(2)已知x,y∈R+,且x+y>1,求證:$\frac{1+x}{y}$與$\frac{1+y}{x}$中至少有一個小于3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)等比數(shù)列{an}的前n項和Sn,已知a1=2,a2=4,那么S10等于( 。
A.210+2B.29-2C.210-2D.211-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知雙曲線$\frac{x^2}{24}-\frac{y^2}{16}$=1,P為雙曲線上一點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的兩個焦點(diǎn),且∠F1PF2=60°,求△F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若存在正整數(shù)m,使得f(n)=(2n-7)3n+9(n∈N*)都能被m整除,則m的最大值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知x>0,y>0且2x+y=2,則$\frac{1}{x}+\frac{4}{{{y^{\;}}}}$的最小值為3+2$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知復(fù)數(shù)$z=\frac{(1-i)+2(1+i)}{2-i}$,若z2+az+b=1-i,
(1)求z;
(2)求實(shí)數(shù)a,b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.根據(jù)氣象記錄,知道甲、乙兩地一年中雨天占的比例分別為20%和18%,兩地同時下雨的比例為12%,則甲地為雨天時乙地也為雨天的概率為(  )
A.0.12B.0.60C.0.67D.0.90

查看答案和解析>>

同步練習(xí)冊答案