在平面直角坐標(biāo)系xOy中,已知圓
:
和圓
:![]()
![]()
(1)若直線l過點(diǎn)A(4,0),且被圓C1截得的弦長為2
,求直線l的方程;
(2)設(shè)P為平面上的點(diǎn),滿足:存在過點(diǎn)P的無窮多對互相垂直的直線
和
,它們分別與圓
和圓
相交,且直線
被圓
截得的弦長與直線
被圓
截得的弦長相等,試求所有滿足條件的點(diǎn)P的坐標(biāo).
(1) 直線
的方程為
或
;(2) 點(diǎn)
或點(diǎn)
.
解析試題分析:在解決與圓相關(guān)的弦長問題時(shí),一般有三種方法:一是直接求出直線與圓的交點(diǎn)坐標(biāo),再利用兩點(diǎn)間的距離公式得出;二是不求交點(diǎn)坐標(biāo),用一元二次方程根與系數(shù)的關(guān)系得出,即設(shè)直線的斜率為k,直線與圓聯(lián)立消去y后得到一個(gè)關(guān)于x的一元二次方程再利用弦長公式求解,三是利用圓中半弦長、弦心距及半徑構(gòu)成的直角三角形來求.對于圓中的弦長問題,一般利用第三種方法比較簡捷.本題所用方法就是第三種方法.
(1)直線
過點(diǎn)
,故可以設(shè)出直線
的點(diǎn)斜式方程,又由直線被圓
截得的弦長為
,根據(jù)半弦長、半徑、弦心距滿足勾股定理,求出弦心距,即圓心到直線的距離,得到一個(gè)關(guān)于直線斜率
的方程,解方程求出
值,可求直線
的方程.
(2)與(1)相同,設(shè)出過
點(diǎn)的直線
與
的點(diǎn)斜式方程,由于兩直線斜率為1,且直線
被圓
截得的弦長與直線
被圓
截得的弦長相等,得到一個(gè)關(guān)于直線斜率
的方程,解方程求出
值,代入即得直線
與
的方程.
試題解析:(1)由于直線
與圓
不相交,所以直線
的斜率存在,設(shè)直線
的方程為
,圓
的圓心
到直線
的距離為
,
因?yàn)橹本
被圓
截得的弦長為
,
,
即
或
,
所以直線
的方程為
或
(5分)
(2)設(shè)點(diǎn)
滿足條件,不妨設(shè)直線
的方程為
,
則直線
的方程為
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/46/9/1ja2y2.png" style="vertical-align:middle;" />和
的半徑相等,及直線
被圓
截得的弦長與直線
被圓
截得的弦長相等,所以圓
的圓心到直線
的距離和圓
的圓心到直線
的距離相等,
即
(8分)
整理得:
即
,因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/84/c/zn9i32.png" style="vertical-align:middle;" />的取值有無窮多個(gè),
所以
(12分)
解得![]()
這樣點(diǎn)
只可能是點(diǎn)
或點(diǎn)
.
經(jīng)檢驗(yàn)點(diǎn)
和
滿足題目條件. (14分)
考點(diǎn):本題考查直線與圓的位置關(guān)系.
| 年級 | 高中課程 | 年級 | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知直角坐標(biāo)平面上點(diǎn)Q(2,0)和圓C:x2+y2=1,動(dòng)點(diǎn)M到圓C的切線長與|MQ|的比等于
.求動(dòng)點(diǎn)M的軌跡方程,并說明它表示什么.![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知曲線C上的動(dòng)點(diǎn)P(
)滿足到定點(diǎn)A(-1,0)的距離與到定點(diǎn)B(1,0)距離之比為![]()
(1)求曲線C的方程。
(2)過點(diǎn)M(1,2)的直線
與曲線C交于兩點(diǎn)M、N,若|MN|=4,求直線
的方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,且經(jīng)過點(diǎn)
,圓
的直徑為
的長軸.如圖,
是橢圓短軸端點(diǎn),動(dòng)直線
過點(diǎn)
且與圓
交于
兩點(diǎn),
垂直于
交橢圓于點(diǎn)
.![]()
(1)求橢圓
的方程;
(2)求
面積的最大值,并求此時(shí)直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn),
軸的非負(fù)半軸為極軸建立極坐標(biāo)系.已知直線l的參數(shù)方程為
為參數(shù)),圓
的極坐標(biāo)方程為
.
(1)若圓
關(guān)于直線
對稱,求
的值;
(2)若圓
與直線
相切,求
的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知圓
,設(shè)點(diǎn)B,C是直線
上的兩點(diǎn),它們的橫坐標(biāo)分別是
,點(diǎn)P在線段BC上,過P點(diǎn)作圓M的切線PA,切點(diǎn)為A
(1)若
,求直線
的方程;
(2)經(jīng)過
三點(diǎn)的圓的圓心是
,求線段
(
為坐標(biāo)原點(diǎn))長的最小值![]()
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知半徑為2,圓心在直線
上的圓C.
(Ⅰ)當(dāng)圓C經(jīng)過點(diǎn)A(2,2)且與
軸相切時(shí),求圓C的方程;
(Ⅱ)已知E(1,1),F(1,-3),若圓C上存在點(diǎn)Q,使
,求圓心的橫坐標(biāo)
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系
中,已知圓
的圓心為
,過點(diǎn)
且斜率為
的直線與圓
相交于不同的兩點(diǎn)
.
(Ⅰ)求
的取值范圍;
(Ⅱ)以O(shè)A,OB為鄰邊作平行四邊形OADB,是否存在常數(shù)
,使得直線OD與PQ平行?如果存在,求
值;如果不存在,請說明理由.
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com