(本小題滿分12分)
已知點(diǎn)R(-3,0),點(diǎn)P在y軸上,點(diǎn)Q在x軸的正半軸上,點(diǎn)M在直線PQ上 ,且滿足
,
.
(Ⅰ)當(dāng)點(diǎn)P在y軸上移動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(Ⅱ)設(shè)
為軌跡C上兩點(diǎn),且
,N(1,0),求實(shí)數(shù)
,使
,且
.
(Ⅰ)
;(Ⅱ)
。
解析試題分析:(Ⅰ)設(shè)點(diǎn)M(x,y),由
得P(0,
),Q(
).
由
得(3,
)·(
,
)=0,即![]()
又點(diǎn)Q在x軸的正半軸上,
故點(diǎn)M的軌跡C的方程是
.……6分
(Ⅱ)解法一:由題意可知N為拋物線C:y2=4x的焦點(diǎn),且A、B為過焦點(diǎn)N的直線與拋物線C的兩個(gè)交點(diǎn)。
當(dāng)直線AB斜率不存在時(shí),得A(1,2),B(1,-2),|AB|
,不合題意;……7分
當(dāng)直線AB斜率存在且不為0時(shí),設(shè)
,代入![]()
得![]()
則|AB|
,解得
………………10分
代入原方程得
,由于
,所以
,
由
,得
. …………………12分
解法二:由題設(shè)條件得
![]()
由(6)、(7)解得
或
,又
,故![]()
考點(diǎn):直線與拋物線的綜合應(yīng)用;向量在幾何中的應(yīng)用;軌跡方程的求法。
點(diǎn)評(píng):求曲線的軌跡方程是解析幾何的基本問題之一。本題主要考查利用“相關(guān)點(diǎn)法”求曲線的軌跡方程。相關(guān)點(diǎn)法:用動(dòng)點(diǎn)Q的坐標(biāo)x,y表示相關(guān)點(diǎn)P的坐標(biāo)x0、y0,然后代入點(diǎn)P的坐標(biāo)(x0,y0)所滿足的曲線方程,整理化簡便得到動(dòng)點(diǎn)Q軌跡方程,這種求軌跡方程的方法叫做相關(guān)點(diǎn)法.
| 年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
| 高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
| 高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
| 高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)
,在平面直角坐標(biāo)系中,已知向量
,向量
,
,動(dòng)點(diǎn)
的軌跡為E.
(1)求軌跡E的方程,并說明該方程所表示曲線的形狀;
(2)已知
,證明:存在圓心在原點(diǎn)的圓,使得該圓的任意一條切線與軌跡E恒有兩個(gè)交點(diǎn)A,B,且
(O為坐標(biāo)原點(diǎn)),并求出該圓的方程;
(3)已知
,設(shè)直線
與圓C:
(1<R<2)相切于A1,且
與軌跡E只有一個(gè)公共點(diǎn)B1,當(dāng)R為何值時(shí),|A1B1|取得最大值?并求最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知在平面直角坐標(biāo)系中的一個(gè)橢圓,它的中心在原點(diǎn),左焦點(diǎn)為
,且過點(diǎn)
.
(1)求該橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)點(diǎn)
,若
是橢圓上的動(dòng)點(diǎn),求線段
的中點(diǎn)
的軌跡方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓
的離心率為
,且過點(diǎn)
.![]()
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)四邊形ABCD的頂點(diǎn)在橢圓上,且對角線A C、BD過原點(diǎn)O,若
,
(i) 求
的最值.
(ii) 求證:四邊形ABCD的面積為定值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:
(a>b>0)的兩個(gè)焦點(diǎn)和短軸的兩個(gè)端點(diǎn)都在圓
上.
(I)求橢圓C的方程;
(II)若斜率為k的直線過點(diǎn)M(2,0),且與橢圓C相交于A, B兩點(diǎn).試探討k為何值時(shí),三角形OAB為直角三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題13分)已知橢圓
,橢圓
以
的長軸為短軸,且與
有相同的離心率.
(1)求橢圓
的方程;
(2)設(shè)O為坐標(biāo)原點(diǎn),點(diǎn)A,B分別在橢圓
和
上,
,求直線
的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓
的離心率為
,右焦點(diǎn)為(
,0),斜率為1的直線
與橢圓G交與A、B兩點(diǎn),以AB為底邊作等腰三角形,頂點(diǎn)為
.
(1)求橢圓G的方程;
(2)求
的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分12分)
已知橢圓
的離心率
,過點(diǎn)
和
的直線與原點(diǎn)的距離為
。⑴求橢圓的方程;⑵已知定點(diǎn)
,若直線
與橢圓交于
兩點(diǎn),問:是否存在
的值,使以
為直徑的圓過
點(diǎn)?請說明理由。
查看答案和解析>>
國際學(xué)校優(yōu)選 - 練習(xí)冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com