分析 由等比數(shù)列通項公式列出方程組,求出首項和公比,由此能求出$\lim_{n→∞}$(a1+a2+…+an).
解答 解:∵等比數(shù)列{an}的公比q滿足|q|<1,且a2a4=4,a3+a4=3,
∴$\left\{\begin{array}{l}{{a}_{1}q•{a}_{1}{q}^{3}=4}\\{{a}_{1}{q}^{2}+{a}_{1}{q}^{3}=3}\end{array}\right.$,
由|q|<1,解得${a}_{1}=8,q=\frac{1}{2}$,
a1+a2+…+an=$\frac{8(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$,
則$\lim_{n→∞}$(a1+a2+…+an)=$\underset{lim}{n→∞}\frac{8(1-\frac{1}{{2}^{n}})}{1-\frac{1}{2}}$=16.
故答案為:16.
點評 本題考查等比數(shù)列的前n項和的極限值的求法,是基礎題,解題時要認真審題,注意等比數(shù)列的性質的合理運用.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | f(x)=${x}^{\frac{1}{2}}$ | B. | f(x)=x3 | C. | f(x)=($\frac{1}{2}$)x | D. | f(x)=lo${g}_{\frac{1}{2}}$x |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com