| A. | |BM|是定值 | B. | 點M在某個球面上運動 | ||
| C. | 存在某個位置,使DE⊥A1C | D. | 存在某個位置,使MB∥平面A1DE |
分析 取CD中點F,連接MF,BF,則平面MBF∥平面A1DE,可得D正確;由余弦定理可得MB2=MF2+FB2-2MF•FB•cos∠MFB,所以MB是定值,M是在以B為圓心,MB為半徑的圓上,可得A,B正確.A1C在平面ABCD中的射影為AC,AC與DE不垂直,可得C不正確.
解答 解:取CD中點F,連接MF,BF,則MF∥DA1,BF∥DE,∴平面MBF∥平面A1DE,
∴MB∥平面A1DE,故D正確
由∠A1DE=∠MFB,MF=$\frac{1}{2}$A1D=定值,F(xiàn)B=DE=定值,
由余弦定理可得MB2=MF2+FB2-2MF•FB•cos∠MFB,所以MB是定值,故A正確.
∵B是定點,∴M是在以B為圓心,MB為半徑的圓上,故B正確,
∵A1C在平面ABCD中的射影為AC,AC與DE不垂直,
∴存在某個位置,使DE⊥A1C不正確.
故選:C.
點評 掌握線面、面面平行與垂直的判定和性質定理及線面角、二面角的定義及求法是解題的關鍵.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | -6 | B. | -4 | C. | 4 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | x=1 | B. | y=1 | C. | x=$\frac{1}{16}$ | D. | y=$\frac{1}{16}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | {1,2,3,4} | B. | {1,2,3,5} | C. | {1,2,5} | D. | {1,2} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
| A. | r1>r3>r4>r2 | B. | r3>r1>r2>r4 | C. | r3>r1>r4>r2 | D. | r1>r3>r2>r4 |
查看答案和解析>>
國際學校優(yōu)選 - 練習冊列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com